用于固体氧化物燃料电池电极极化有效预测的拓扑信息机器学习

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Maksym Szemer , Szymon Buchaniec , Tomasz Prokop , Grzegorz Brus
{"title":"用于固体氧化物燃料电池电极极化有效预测的拓扑信息机器学习","authors":"Maksym Szemer ,&nbsp;Szymon Buchaniec ,&nbsp;Tomasz Prokop ,&nbsp;Grzegorz Brus","doi":"10.1016/j.egyai.2025.100495","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning has emerged as a potent computational tool for expediting research and development in solid oxide fuel cell electrodes. The effective application of machine learning for performance prediction requires transforming electrode microstructure into a format compatible with artificial neural networks. Input data may range from a comprehensive digital material representation of the electrode to a selected set of microstructural parameters. The chosen representation significantly influences the performance and results of the network. Here, we show a novel approach utilizing persistence representation derived from computational topology. Using 500 microstructures and current–voltage characteristics obtained with three-dimensional first-principles simulations, we have prepared an artificial neural network model that can replicate current–voltage characteristics of unseen microstructures based on their persistent image representation. The artificial neural network can accurately predict the polarization curve of solid oxide fuel cell electrodes. The presented method incorporates complex microstructural information from the digital material representation while requiring substantially less computational resources (preprocessing and prediction time <span><math><mrow><mo>≈</mo><mtext>1</mtext><mspace></mspace><mtext>min</mtext></mrow></math></span>) compared to our high-fidelity simulations (simulation time <span><math><mrow><mo>≈</mo><mtext>1</mtext><mspace></mspace><mtext>h</mtext></mrow></math></span>) to obtain a single current-potential characteristic for one microstructure.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100495"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology-informed machine learning for efficient prediction of solid oxide fuel cell electrode polarization\",\"authors\":\"Maksym Szemer ,&nbsp;Szymon Buchaniec ,&nbsp;Tomasz Prokop ,&nbsp;Grzegorz Brus\",\"doi\":\"10.1016/j.egyai.2025.100495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning has emerged as a potent computational tool for expediting research and development in solid oxide fuel cell electrodes. The effective application of machine learning for performance prediction requires transforming electrode microstructure into a format compatible with artificial neural networks. Input data may range from a comprehensive digital material representation of the electrode to a selected set of microstructural parameters. The chosen representation significantly influences the performance and results of the network. Here, we show a novel approach utilizing persistence representation derived from computational topology. Using 500 microstructures and current–voltage characteristics obtained with three-dimensional first-principles simulations, we have prepared an artificial neural network model that can replicate current–voltage characteristics of unseen microstructures based on their persistent image representation. The artificial neural network can accurately predict the polarization curve of solid oxide fuel cell electrodes. The presented method incorporates complex microstructural information from the digital material representation while requiring substantially less computational resources (preprocessing and prediction time <span><math><mrow><mo>≈</mo><mtext>1</mtext><mspace></mspace><mtext>min</mtext></mrow></math></span>) compared to our high-fidelity simulations (simulation time <span><math><mrow><mo>≈</mo><mtext>1</mtext><mspace></mspace><mtext>h</mtext></mrow></math></span>) to obtain a single current-potential characteristic for one microstructure.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"20 \",\"pages\":\"Article 100495\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825000278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

机器学习已经成为加速固体氧化物燃料电池电极研究和开发的有力计算工具。机器学习在性能预测中的有效应用需要将电极微观结构转换为与人工神经网络兼容的格式。输入数据的范围可以从电极的综合数字材料表示到选定的一组微观结构参数。所选择的表示对网络的性能和结果有显著影响。在这里,我们展示了一种利用来自计算拓扑的持久性表示的新方法。利用三维第一性原理模拟获得的500个微结构和电流-电压特征,我们制备了一个人工神经网络模型,该模型可以基于其持久的图像表示来复制未见微结构的电流-电压特征。人工神经网络可以准确预测固体氧化物燃料电池电极的极化曲线。该方法结合了来自数字材料表示的复杂微观结构信息,同时与我们的高保真仿真(仿真时间≈1h)相比,所需的计算资源(预处理和预测时间≈1min)大大减少,从而获得一个微观结构的单个电流-电位特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Topology-informed machine learning for efficient prediction of solid oxide fuel cell electrode polarization

Topology-informed machine learning for efficient prediction of solid oxide fuel cell electrode polarization
Machine learning has emerged as a potent computational tool for expediting research and development in solid oxide fuel cell electrodes. The effective application of machine learning for performance prediction requires transforming electrode microstructure into a format compatible with artificial neural networks. Input data may range from a comprehensive digital material representation of the electrode to a selected set of microstructural parameters. The chosen representation significantly influences the performance and results of the network. Here, we show a novel approach utilizing persistence representation derived from computational topology. Using 500 microstructures and current–voltage characteristics obtained with three-dimensional first-principles simulations, we have prepared an artificial neural network model that can replicate current–voltage characteristics of unseen microstructures based on their persistent image representation. The artificial neural network can accurately predict the polarization curve of solid oxide fuel cell electrodes. The presented method incorporates complex microstructural information from the digital material representation while requiring substantially less computational resources (preprocessing and prediction time 1min) compared to our high-fidelity simulations (simulation time 1h) to obtain a single current-potential characteristic for one microstructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信