基于图的原型反投影识别先天性心脏病皮质沟模式异常

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hyeokjin Kwon , Seungyeon Son , Sarah U. Morton , David Wypij , John Cleveland , Caitlin K Rollins , Hao Huang , Elizabeth Goldmuntz , Ashok Panigrahy , Nina H. Thomas , Wendy K. Chung , Evdokia Anagnostou , Ami Norris-Brilliant , Bruce D. Gelb , Patrick McQuillen , George A. Porter Jr. , Martin Tristani-Firouzi , Mark W. Russell , Amy E. Roberts , Jane W. Newburger , Kiho Im
{"title":"基于图的原型反投影识别先天性心脏病皮质沟模式异常","authors":"Hyeokjin Kwon ,&nbsp;Seungyeon Son ,&nbsp;Sarah U. Morton ,&nbsp;David Wypij ,&nbsp;John Cleveland ,&nbsp;Caitlin K Rollins ,&nbsp;Hao Huang ,&nbsp;Elizabeth Goldmuntz ,&nbsp;Ashok Panigrahy ,&nbsp;Nina H. Thomas ,&nbsp;Wendy K. Chung ,&nbsp;Evdokia Anagnostou ,&nbsp;Ami Norris-Brilliant ,&nbsp;Bruce D. Gelb ,&nbsp;Patrick McQuillen ,&nbsp;George A. Porter Jr. ,&nbsp;Martin Tristani-Firouzi ,&nbsp;Mark W. Russell ,&nbsp;Amy E. Roberts ,&nbsp;Jane W. Newburger ,&nbsp;Kiho Im","doi":"10.1016/j.media.2025.103538","DOIUrl":null,"url":null,"abstract":"<div><div>Examining the altered arrangement and patterning of sulcal folds offers insights into the mechanisms of neurodevelopmental differences in psychiatric and neurological disorders. Previous sulcal pattern analysis used spectral graph matching of sulcal pit-based graph structures to assess deviations from normative sulcal patterns. However, challenges exist, including the absence of a standard criterion for defining a typical reference set, time-consuming cost of graph matching, user-defined feature weight sets, and assumptions about uniform node distribution. We developed a deep learning-based sulcal pattern analysis to address these challenges by adapting prototype-based graph neural networks to sulcal pattern graphs. Additionally, we proposed a prototype inverse-projection for better interpretability. Unlike other prototype-based models, our approach inversely projects prototypes onto individual node representations to calculate the inverse-projection weights, enabling efficient visualization of prototypes and focusing the model on selective regions. We evaluated our method through a classification task between healthy controls (<em>n</em> = 174, age = 15.4 <span><math><mrow><mo>±</mo><mrow><mspace></mspace></mrow></mrow></math></span>1.9 [mean ± standard deviation, years]) and patients with congenital heart disease (<em>n</em> = 345, age = 15.8 <span><math><mrow><mo>±</mo><mrow><mspace></mspace></mrow></mrow></math></span>4.7) from four cohort studies and a public dataset. Our approach demonstrated superior classification performance compared to other state-of-the-art models, supported by extensive ablative studies. Furthermore, we visualized and examined the learned prototypes to enhance understanding. We believe our method has the potential to be a sensitive and understandable tool for sulcal pattern analysis.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103538"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-based prototype inverse-projection for identifying cortical sulcal pattern abnormalities in congenital heart disease\",\"authors\":\"Hyeokjin Kwon ,&nbsp;Seungyeon Son ,&nbsp;Sarah U. Morton ,&nbsp;David Wypij ,&nbsp;John Cleveland ,&nbsp;Caitlin K Rollins ,&nbsp;Hao Huang ,&nbsp;Elizabeth Goldmuntz ,&nbsp;Ashok Panigrahy ,&nbsp;Nina H. Thomas ,&nbsp;Wendy K. Chung ,&nbsp;Evdokia Anagnostou ,&nbsp;Ami Norris-Brilliant ,&nbsp;Bruce D. Gelb ,&nbsp;Patrick McQuillen ,&nbsp;George A. Porter Jr. ,&nbsp;Martin Tristani-Firouzi ,&nbsp;Mark W. Russell ,&nbsp;Amy E. Roberts ,&nbsp;Jane W. Newburger ,&nbsp;Kiho Im\",\"doi\":\"10.1016/j.media.2025.103538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Examining the altered arrangement and patterning of sulcal folds offers insights into the mechanisms of neurodevelopmental differences in psychiatric and neurological disorders. Previous sulcal pattern analysis used spectral graph matching of sulcal pit-based graph structures to assess deviations from normative sulcal patterns. However, challenges exist, including the absence of a standard criterion for defining a typical reference set, time-consuming cost of graph matching, user-defined feature weight sets, and assumptions about uniform node distribution. We developed a deep learning-based sulcal pattern analysis to address these challenges by adapting prototype-based graph neural networks to sulcal pattern graphs. Additionally, we proposed a prototype inverse-projection for better interpretability. Unlike other prototype-based models, our approach inversely projects prototypes onto individual node representations to calculate the inverse-projection weights, enabling efficient visualization of prototypes and focusing the model on selective regions. We evaluated our method through a classification task between healthy controls (<em>n</em> = 174, age = 15.4 <span><math><mrow><mo>±</mo><mrow><mspace></mspace></mrow></mrow></math></span>1.9 [mean ± standard deviation, years]) and patients with congenital heart disease (<em>n</em> = 345, age = 15.8 <span><math><mrow><mo>±</mo><mrow><mspace></mspace></mrow></mrow></math></span>4.7) from four cohort studies and a public dataset. Our approach demonstrated superior classification performance compared to other state-of-the-art models, supported by extensive ablative studies. Furthermore, we visualized and examined the learned prototypes to enhance understanding. We believe our method has the potential to be a sensitive and understandable tool for sulcal pattern analysis.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"102 \",\"pages\":\"Article 103538\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525000854\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000854","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

检查沟襞的改变排列和模式提供了对精神和神经疾病中神经发育差异的机制的见解。以前的沟模式分析使用基于沟坑的图结构的谱图匹配来评估与规范沟模式的偏差。然而,挑战仍然存在,包括缺乏定义典型参考集的标准标准、图匹配的耗时成本、用户定义的特征权重集以及关于均匀节点分布的假设。我们开发了一种基于深度学习的沟模式分析,通过将基于原型的图神经网络应用于沟模式图来解决这些挑战。此外,我们提出了一个原型反投影,以获得更好的可解释性。与其他基于原型的模型不同,我们的方法将原型反向投影到单个节点表示上,以计算反向投影权重,从而实现原型的有效可视化,并将模型集中在选择的区域上。我们通过四个队列研究和一个公共数据集的健康对照(n = 174,年龄= 15.4±1.9[平均±标准差,年])和先天性心脏病患者(n = 345,年龄= 15.8±4.7)的分类任务来评估我们的方法。与其他先进的模型相比,我们的方法表现出优越的分类性能,并得到了广泛的烧蚀研究的支持。此外,我们将学习到的原型进行可视化和检查,以增强理解。我们相信我们的方法有潜力成为一种敏感和可理解的沟模式分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Graph-based prototype inverse-projection for identifying cortical sulcal pattern abnormalities in congenital heart disease

Graph-based prototype inverse-projection for identifying cortical sulcal pattern abnormalities in congenital heart disease
Examining the altered arrangement and patterning of sulcal folds offers insights into the mechanisms of neurodevelopmental differences in psychiatric and neurological disorders. Previous sulcal pattern analysis used spectral graph matching of sulcal pit-based graph structures to assess deviations from normative sulcal patterns. However, challenges exist, including the absence of a standard criterion for defining a typical reference set, time-consuming cost of graph matching, user-defined feature weight sets, and assumptions about uniform node distribution. We developed a deep learning-based sulcal pattern analysis to address these challenges by adapting prototype-based graph neural networks to sulcal pattern graphs. Additionally, we proposed a prototype inverse-projection for better interpretability. Unlike other prototype-based models, our approach inversely projects prototypes onto individual node representations to calculate the inverse-projection weights, enabling efficient visualization of prototypes and focusing the model on selective regions. We evaluated our method through a classification task between healthy controls (n = 174, age = 15.4 ±1.9 [mean ± standard deviation, years]) and patients with congenital heart disease (n = 345, age = 15.8 ±4.7) from four cohort studies and a public dataset. Our approach demonstrated superior classification performance compared to other state-of-the-art models, supported by extensive ablative studies. Furthermore, we visualized and examined the learned prototypes to enhance understanding. We believe our method has the potential to be a sensitive and understandable tool for sulcal pattern analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信