探索锌掺杂NiBP微球作为工业规模水分解高效稳定的电催化剂

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Sumiya Akter Dristy, Md Ahasan Habib, Shusen Lin, Mehedi Hasan Joni, Rutuja Mandavkar, Young-Uk Chung, Md Najibullah, Jihoon Lee
{"title":"探索锌掺杂NiBP微球作为工业规模水分解高效稳定的电催化剂","authors":"Sumiya Akter Dristy,&nbsp;Md Ahasan Habib,&nbsp;Shusen Lin,&nbsp;Mehedi Hasan Joni,&nbsp;Rutuja Mandavkar,&nbsp;Young-Uk Chung,&nbsp;Md Najibullah,&nbsp;Jihoon Lee","doi":"10.1016/j.actphy.2025.100079","DOIUrl":null,"url":null,"abstract":"<div><div>Green hydrogen holds great promise for the future energy ecosystem and designing alternative electrocatalysts is essential for industrial-scale green hydrogen production for high-current water splitting under industrial conditions. Herein, the Zn-doped NiBP microsphere electrocatalyst is fabricated <em>via</em> a multi-step process combining hydrothermal and electrochemical approaches, followed by post-annealing. The optimized Zn/NiBP electrode outperforms the majority of previously reported catalysts, with low overpotentials of 95 ​mV for HER (hydrogen evolution reaction) and 280 ​mV for OER (oxygen evolution reaction) at 100 ​mA ​cm<sup>−2</sup> in 1 ​mol ​L<sup>−1</sup> KOH. The bifunctional Zn/NiBP || Zn/NiBP demonstrates a 3.10 ​V cell voltage at 2000 ​mA ​cm<sup>−2</sup> in 1 ​mol ​L<sup>−1</sup> KOH, surpassing the benchmark Pt/C || RuO<sub>2</sub> systems. The Pt/C || Zn/NiBP hybrid system exhibits exceptionally low cell voltages of 2.50 and 2.30 ​V at 2000 ​mA ​cm<sup>−2</sup> in 1 and 6 ​mol ​L<sup>−1</sup> KOH respectively, demonstrating excellent overall water-splitting performance under challenging industrial conditions. Furthermore, the 2-E system shows remarkable stability over 120 ​h at 1000 ​mA ​cm<sup>−2</sup> in 1 and 6 ​mol ​L<sup>−1</sup> KOH, indicating the robust anti-corrosion properties of the Zn/NiBP microspheres. Zn-doped NiBP microspheres exhibit enhanced electrochemical conductivity, active surface area and intrinsic electrocatalytic activity due to synergistic interactions among Zn, Ni, B and P, enabling rapid charge transfer and superior electrocatalytic performance for efficient hydrogen generation.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 7","pages":"Article 100079"},"PeriodicalIF":10.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting\",\"authors\":\"Sumiya Akter Dristy,&nbsp;Md Ahasan Habib,&nbsp;Shusen Lin,&nbsp;Mehedi Hasan Joni,&nbsp;Rutuja Mandavkar,&nbsp;Young-Uk Chung,&nbsp;Md Najibullah,&nbsp;Jihoon Lee\",\"doi\":\"10.1016/j.actphy.2025.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Green hydrogen holds great promise for the future energy ecosystem and designing alternative electrocatalysts is essential for industrial-scale green hydrogen production for high-current water splitting under industrial conditions. Herein, the Zn-doped NiBP microsphere electrocatalyst is fabricated <em>via</em> a multi-step process combining hydrothermal and electrochemical approaches, followed by post-annealing. The optimized Zn/NiBP electrode outperforms the majority of previously reported catalysts, with low overpotentials of 95 ​mV for HER (hydrogen evolution reaction) and 280 ​mV for OER (oxygen evolution reaction) at 100 ​mA ​cm<sup>−2</sup> in 1 ​mol ​L<sup>−1</sup> KOH. The bifunctional Zn/NiBP || Zn/NiBP demonstrates a 3.10 ​V cell voltage at 2000 ​mA ​cm<sup>−2</sup> in 1 ​mol ​L<sup>−1</sup> KOH, surpassing the benchmark Pt/C || RuO<sub>2</sub> systems. The Pt/C || Zn/NiBP hybrid system exhibits exceptionally low cell voltages of 2.50 and 2.30 ​V at 2000 ​mA ​cm<sup>−2</sup> in 1 and 6 ​mol ​L<sup>−1</sup> KOH respectively, demonstrating excellent overall water-splitting performance under challenging industrial conditions. Furthermore, the 2-E system shows remarkable stability over 120 ​h at 1000 ​mA ​cm<sup>−2</sup> in 1 and 6 ​mol ​L<sup>−1</sup> KOH, indicating the robust anti-corrosion properties of the Zn/NiBP microspheres. Zn-doped NiBP microspheres exhibit enhanced electrochemical conductivity, active surface area and intrinsic electrocatalytic activity due to synergistic interactions among Zn, Ni, B and P, enabling rapid charge transfer and superior electrocatalytic performance for efficient hydrogen generation.</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"41 7\",\"pages\":\"Article 100079\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681825000359\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000359","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

绿色氢对未来的能源生态系统有着巨大的希望,设计替代电催化剂对于工业规模的绿色氢生产至关重要,可以在工业条件下进行大电流水分解。本文采用水热法和电化学法相结合的多步骤工艺制备了掺杂锌的NiBP微球电催化剂,然后进行后退火。优化后的Zn/NiBP电极优于之前报道的大多数催化剂,在100 mA cm−2、1 mol L−1 KOH条件下,HER(析氢反应)的过电位为95 mV, OER(析氧反应)的过电位为280 mV。双功能Zn/NiBP在1 mol L−1 KOH条件下,电池电压为3.10 V,电压为2000 mA cm−2,优于基准的Pt/C || RuO2体系。Pt/C || Zn/NiBP混合体系在1 mol L−1 KOH和6 mol L−1 KOH条件下,在2000 mA cm−2下分别表现出2.50和2.30 V的极低电池电压,在具有挑战性的工业条件下表现出出色的整体水分解性能。此外,在1和6 mol L−1 KOH条件下,在1000 mA cm−2条件下,2- e体系在120 h内表现出显著的稳定性,表明Zn/NiBP微球具有强大的抗腐蚀性能。由于锌、Ni、B和P之间的协同作用,掺杂锌的NiBP微球具有增强的电化学导电性、活性表面积和内在电催化活性,从而实现快速的电荷转移和卓越的电催化性能,从而实现高效制氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting

Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting
Green hydrogen holds great promise for the future energy ecosystem and designing alternative electrocatalysts is essential for industrial-scale green hydrogen production for high-current water splitting under industrial conditions. Herein, the Zn-doped NiBP microsphere electrocatalyst is fabricated via a multi-step process combining hydrothermal and electrochemical approaches, followed by post-annealing. The optimized Zn/NiBP electrode outperforms the majority of previously reported catalysts, with low overpotentials of 95 ​mV for HER (hydrogen evolution reaction) and 280 ​mV for OER (oxygen evolution reaction) at 100 ​mA ​cm−2 in 1 ​mol ​L−1 KOH. The bifunctional Zn/NiBP || Zn/NiBP demonstrates a 3.10 ​V cell voltage at 2000 ​mA ​cm−2 in 1 ​mol ​L−1 KOH, surpassing the benchmark Pt/C || RuO2 systems. The Pt/C || Zn/NiBP hybrid system exhibits exceptionally low cell voltages of 2.50 and 2.30 ​V at 2000 ​mA ​cm−2 in 1 and 6 ​mol ​L−1 KOH respectively, demonstrating excellent overall water-splitting performance under challenging industrial conditions. Furthermore, the 2-E system shows remarkable stability over 120 ​h at 1000 ​mA ​cm−2 in 1 and 6 ​mol ​L−1 KOH, indicating the robust anti-corrosion properties of the Zn/NiBP microspheres. Zn-doped NiBP microspheres exhibit enhanced electrochemical conductivity, active surface area and intrinsic electrocatalytic activity due to synergistic interactions among Zn, Ni, B and P, enabling rapid charge transfer and superior electrocatalytic performance for efficient hydrogen generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信