基于增强射频识别的无人机单次生成分布匹配

IF 4.9
Amir Kazemi , Salar Basiri , Volodymyr Kindratenko , Srinivasa Salapaka
{"title":"基于增强射频识别的无人机单次生成分布匹配","authors":"Amir Kazemi ,&nbsp;Salar Basiri ,&nbsp;Volodymyr Kindratenko ,&nbsp;Srinivasa Salapaka","doi":"10.1016/j.mlwa.2025.100638","DOIUrl":null,"url":null,"abstract":"<div><div>This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments. The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective. To address these complications, the study introduces the rigorous use of one-shot generative methods for augmenting transformed RF signals, offering a significant improvement in UAV identification. This approach, when utilizing a distributional distance metric, demonstrates significant promise in low-data regimes, outperforming deep generative methods such as conditional generative adversarial networks (GANs) and variational autoencoders (VAEs). The paper provides a theoretical guarantee for the effectiveness of one-shot generative models in augmenting limited data, setting a precedent for their application in limited RF environments. This research also contributes to learning techniques in low-data regime scenarios, which may include complex sequences beyond images and videos. The code and links to datasets used in this study are available at <span><span>https://github.com/amir-kazemi/uav-rf-id</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100638"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-shot generative distribution matching for augmented RF-based UAV identification\",\"authors\":\"Amir Kazemi ,&nbsp;Salar Basiri ,&nbsp;Volodymyr Kindratenko ,&nbsp;Srinivasa Salapaka\",\"doi\":\"10.1016/j.mlwa.2025.100638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments. The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective. To address these complications, the study introduces the rigorous use of one-shot generative methods for augmenting transformed RF signals, offering a significant improvement in UAV identification. This approach, when utilizing a distributional distance metric, demonstrates significant promise in low-data regimes, outperforming deep generative methods such as conditional generative adversarial networks (GANs) and variational autoencoders (VAEs). The paper provides a theoretical guarantee for the effectiveness of one-shot generative models in augmenting limited data, setting a precedent for their application in limited RF environments. This research also contributes to learning techniques in low-data regime scenarios, which may include complex sequences beyond images and videos. The code and links to datasets used in this study are available at <span><span>https://github.com/amir-kazemi/uav-rf-id</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"20 \",\"pages\":\"Article 100638\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827025000210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作解决了在有限的射频环境中使用射频(RF)指纹识别无人驾驶飞行器(UAV)的挑战。射频信号的复杂性和可变性,受环境干扰和硬件缺陷的影响,往往使传统的基于射频的识别方法失效。为了解决这些复杂问题,该研究引入了严格使用一次性生成方法来增强变换后的射频信号,为无人机识别提供了重大改进。当使用分布式距离度量时,这种方法在低数据状态下显示出显著的前景,优于深度生成方法,如条件生成对抗网络(gan)和变分自编码器(VAEs)。本文为单次生成模型在有限数据扩充中的有效性提供了理论保证,为其在有限射频环境中的应用开创了先例。这项研究也有助于在低数据情况下的学习技术,这可能包括图像和视频以外的复杂序列。本研究中使用的数据集的代码和链接可在https://github.com/amir-kazemi/uav-rf-id上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-shot generative distribution matching for augmented RF-based UAV identification
This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments. The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective. To address these complications, the study introduces the rigorous use of one-shot generative methods for augmenting transformed RF signals, offering a significant improvement in UAV identification. This approach, when utilizing a distributional distance metric, demonstrates significant promise in low-data regimes, outperforming deep generative methods such as conditional generative adversarial networks (GANs) and variational autoencoders (VAEs). The paper provides a theoretical guarantee for the effectiveness of one-shot generative models in augmenting limited data, setting a precedent for their application in limited RF environments. This research also contributes to learning techniques in low-data regime scenarios, which may include complex sequences beyond images and videos. The code and links to datasets used in this study are available at https://github.com/amir-kazemi/uav-rf-id.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信