{"title":"同时丢番图近似于维罗内塞曲线上的点","authors":"Dmitry Badziahin","doi":"10.1016/j.aim.2025.110213","DOIUrl":null,"url":null,"abstract":"<div><div>We compute the Hausdorff dimension of the set of simultaneously <span><math><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup></math></span>-well approximable points on the Veronese curve in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <em>λ</em> between <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></math></span>. For <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>, the same result is given for a wider range of <em>λ</em> between <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. We also provide a nontrivial upper bound for this Hausdorff dimension in the case <span><math><mi>λ</mi><mo>⩽</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. In the course of the proof we establish that the number of cubic polynomials of height at most <em>H</em> and non-zero discriminant at most <em>D</em> is bounded from above by <span><math><mi>c</mi><mo>(</mo><mi>ϵ</mi><mo>)</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>ϵ</mi></mrow></msup><msup><mrow><mi>D</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>6</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"468 ","pages":"Article 110213"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Diophantine approximation to points on the Veronese curve\",\"authors\":\"Dmitry Badziahin\",\"doi\":\"10.1016/j.aim.2025.110213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We compute the Hausdorff dimension of the set of simultaneously <span><math><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup></math></span>-well approximable points on the Veronese curve in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <em>λ</em> between <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></math></span>. For <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>, the same result is given for a wider range of <em>λ</em> between <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. We also provide a nontrivial upper bound for this Hausdorff dimension in the case <span><math><mi>λ</mi><mo>⩽</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>. In the course of the proof we establish that the number of cubic polynomials of height at most <em>H</em> and non-zero discriminant at most <em>D</em> is bounded from above by <span><math><mi>c</mi><mo>(</mo><mi>ϵ</mi><mo>)</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn><mo>+</mo><mi>ϵ</mi></mrow></msup><msup><mrow><mi>D</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>6</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"468 \",\"pages\":\"Article 110213\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825001112\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001112","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Simultaneous Diophantine approximation to points on the Veronese curve
We compute the Hausdorff dimension of the set of simultaneously -well approximable points on the Veronese curve in for λ between and . For , the same result is given for a wider range of λ between and . We also provide a nontrivial upper bound for this Hausdorff dimension in the case . In the course of the proof we establish that the number of cubic polynomials of height at most H and non-zero discriminant at most D is bounded from above by .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.