硼在FeC和FeNC单原子ORR催化剂中的取代和配位效应:DFT研究

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
L.L. Sun , Z.Y. Wang , Y.H. Wang , Y. Wang , Y.C. Li
{"title":"硼在FeC和FeNC单原子ORR催化剂中的取代和配位效应:DFT研究","authors":"L.L. Sun ,&nbsp;Z.Y. Wang ,&nbsp;Y.H. Wang ,&nbsp;Y. Wang ,&nbsp;Y.C. Li","doi":"10.1016/j.comptc.2025.115192","DOIUrl":null,"url":null,"abstract":"<div><div>The development of durable and cost-effective cathode catalysts is critical to improving the oxygen reduction reaction (ORR) of fuel cells. The B-substituted Fe-based graphene single atom catalysts (SACs) were systematically analyzed using density functional theory (DFT). After analysis of the computational formation energy, 12 stable configurations are identified from 49 candidates. B-substituted in the first coordination sphere layer resulted in excessively strong adsorption of oxygen-containing intermediates, thereby increasing the overpotential. In contrast, the FeN<sub>4</sub>B<sub><del>4</del></sub> and FeN<sub>4</sub>B<sub>5</sub> catalysts, with B substitution in the second coordination sphere, exhibited low overpotentials of 0.32 V and 0.36 V, respectively. This enhancement is attributed to the B-atom-induced reconfiguration of the electronic structure and modulation of chemical bonding properties.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1248 ","pages":"Article 115192"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substitution and coordination effects of boron in FeC and FeNC single-atom catalysts for ORR: A DFT study\",\"authors\":\"L.L. Sun ,&nbsp;Z.Y. Wang ,&nbsp;Y.H. Wang ,&nbsp;Y. Wang ,&nbsp;Y.C. Li\",\"doi\":\"10.1016/j.comptc.2025.115192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of durable and cost-effective cathode catalysts is critical to improving the oxygen reduction reaction (ORR) of fuel cells. The B-substituted Fe-based graphene single atom catalysts (SACs) were systematically analyzed using density functional theory (DFT). After analysis of the computational formation energy, 12 stable configurations are identified from 49 candidates. B-substituted in the first coordination sphere layer resulted in excessively strong adsorption of oxygen-containing intermediates, thereby increasing the overpotential. In contrast, the FeN<sub>4</sub>B<sub><del>4</del></sub> and FeN<sub>4</sub>B<sub>5</sub> catalysts, with B substitution in the second coordination sphere, exhibited low overpotentials of 0.32 V and 0.36 V, respectively. This enhancement is attributed to the B-atom-induced reconfiguration of the electronic structure and modulation of chemical bonding properties.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1248 \",\"pages\":\"Article 115192\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X25001288\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25001288","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发耐用、经济的阴极催化剂是提高燃料电池氧还原反应性能的关键。采用密度泛函理论(DFT)对b取代铁基石墨烯单原子催化剂进行了系统分析。通过对计算地层能量的分析,从49个候选地层中确定了12个稳定构型。第一配位球层中的b取代导致含氧中间体吸附过强,从而增加过电位。相比之下,在第二配位球中取代B的FeN4B4和FeN4B5催化剂的过电位分别为0.32 V和0.36 V。这种增强归因于b原子诱导的电子结构重构和化学键性质的调制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Substitution and coordination effects of boron in FeC and FeNC single-atom catalysts for ORR: A DFT study

Substitution and coordination effects of boron in FeC and FeNC single-atom catalysts for ORR: A DFT study
The development of durable and cost-effective cathode catalysts is critical to improving the oxygen reduction reaction (ORR) of fuel cells. The B-substituted Fe-based graphene single atom catalysts (SACs) were systematically analyzed using density functional theory (DFT). After analysis of the computational formation energy, 12 stable configurations are identified from 49 candidates. B-substituted in the first coordination sphere layer resulted in excessively strong adsorption of oxygen-containing intermediates, thereby increasing the overpotential. In contrast, the FeN4B4 and FeN4B5 catalysts, with B substitution in the second coordination sphere, exhibited low overpotentials of 0.32 V and 0.36 V, respectively. This enhancement is attributed to the B-atom-induced reconfiguration of the electronic structure and modulation of chemical bonding properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信