集合上的几何TSP

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Henk Alkema, Mark de Berg
{"title":"集合上的几何TSP","authors":"Henk Alkema,&nbsp;Mark de Berg","doi":"10.1016/j.comgeo.2025.102187","DOIUrl":null,"url":null,"abstract":"<div><div>In <span>One-of-a-Set TSP</span>, also known as the <span>Generalised TSP</span>, the input is a collection <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> of sets in a metric space and the goal is to compute a minimum-length tour that visits one element from each set.</div><div>In the Euclidean variant of this problem, each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a set of points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> be a hypercube that contains <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi></math></span>. We investigate how the complexity of <span>Euclidean One-of-a-Set TSP</span> depends on <em>λ</em>, the ply of the set <span><math><mi>H</mi><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> of hypercubes. (The ply is the smallest <em>λ</em> such that every point in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is contained in at most <em>λ</em> of the hypercubes). We show that the problem can be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></mrow></msup></math></span> time, where <span><math><mi>n</mi><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>|</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></math></span> is the total number of points, and that the problem cannot be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> time when <span><math><mi>λ</mi><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, unless the Exponential Time Hypothesis (ETH) fails.</div><div>In <span>Rectilinear One-of-a-Cube TSP</span>, the input is a set <span><math><mi>H</mi></math></span> of hypercubes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and the goal is to compute a minimum-length rectilinear tour that visits every hypercube. We show that the problem can be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> time, where <em>n</em> is the number of hypercubes.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102187"},"PeriodicalIF":0.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric TSP on sets\",\"authors\":\"Henk Alkema,&nbsp;Mark de Berg\",\"doi\":\"10.1016/j.comgeo.2025.102187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In <span>One-of-a-Set TSP</span>, also known as the <span>Generalised TSP</span>, the input is a collection <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> of sets in a metric space and the goal is to compute a minimum-length tour that visits one element from each set.</div><div>In the Euclidean variant of this problem, each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a set of points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> be a hypercube that contains <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi></math></span>. We investigate how the complexity of <span>Euclidean One-of-a-Set TSP</span> depends on <em>λ</em>, the ply of the set <span><math><mi>H</mi><mo>:</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>}</mo></math></span> of hypercubes. (The ply is the smallest <em>λ</em> such that every point in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is contained in at most <em>λ</em> of the hypercubes). We show that the problem can be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mo>)</mo></mrow></msup></math></span> time, where <span><math><mi>n</mi><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>|</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></math></span> is the total number of points, and that the problem cannot be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> time when <span><math><mi>λ</mi><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, unless the Exponential Time Hypothesis (ETH) fails.</div><div>In <span>Rectilinear One-of-a-Cube TSP</span>, the input is a set <span><math><mi>H</mi></math></span> of hypercubes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and the goal is to compute a minimum-length rectilinear tour that visits every hypercube. We show that the problem can be solved in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> time, where <em>n</em> is the number of hypercubes.</div></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":\"129 \",\"pages\":\"Article 102187\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772125000252\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000252","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在One-of-a-Set TSP中,也称为广义TSP,输入是一个集合P:={P1,…,Pr}是度量空间中的集合,目标是计算访问每个集合中的一个元素的最小长度巡回。在这个问题的欧几里得变体中,每个Pi是Rd中点的集合。设Hi是一个包含Pi的超立方体,对于1≤i≤r。我们研究了欧几里得单集TSP的复杂度如何依赖于λ,集合H的层数:={H1,…,超立方体的Hr}。(铺层是最小的λ,使得Rd中的每个点最多包含在超立方体的λ中)。我们证明了问题可以在2O(λ1/dn1−1/d)时间内解决,其中n:=∑i=1r|Pi|是总点数,并且当λ=Θ(n)时,除非指数时间假设(ETH)失效,否则问题不能在2O(n)时间内解决。在直角1 -of-a- cube TSP中,输入是Rd中的超立方体集合H,目标是计算访问每个超立方体的最小长度的直线巡回。我们证明了这个问题可以在2O(λ1/dn1−1/dlog (n))时间内解决,其中n是超立方体的个数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric TSP on sets
In One-of-a-Set TSP, also known as the Generalised TSP, the input is a collection P:={P1,...,Pr} of sets in a metric space and the goal is to compute a minimum-length tour that visits one element from each set.
In the Euclidean variant of this problem, each Pi is a set of points in Rd. Let Hi be a hypercube that contains Pi, for 1ir. We investigate how the complexity of Euclidean One-of-a-Set TSP depends on λ, the ply of the set H:={H1,...,Hr} of hypercubes. (The ply is the smallest λ such that every point in Rd is contained in at most λ of the hypercubes). We show that the problem can be solved in 2O(λ1/dn11/d) time, where n:=i=1r|Pi| is the total number of points, and that the problem cannot be solved in 2o(n) time when λ=Θ(n), unless the Exponential Time Hypothesis (ETH) fails.
In Rectilinear One-of-a-Cube TSP, the input is a set H of hypercubes in Rd and the goal is to compute a minimum-length rectilinear tour that visits every hypercube. We show that the problem can be solved in 2O(λ1/dn11/dlogn) time, where n is the number of hypercubes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信