结合正交实验、机器学习和帕累托分析的高端铜合金工艺快速设计

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peiwen Yun , Huadong Fu , Hongtao Zhang , Jingtai Sun , Menghe Zhao , Jianxin Xie
{"title":"结合正交实验、机器学习和帕累托分析的高端铜合金工艺快速设计","authors":"Peiwen Yun ,&nbsp;Huadong Fu ,&nbsp;Hongtao Zhang ,&nbsp;Jingtai Sun ,&nbsp;Menghe Zhao ,&nbsp;Jianxin Xie","doi":"10.1016/j.jmrt.2025.03.119","DOIUrl":null,"url":null,"abstract":"<div><div>To overcome the challenge of using data-driven methods for alloy design in extremely limited sample data, this study proposes a rapid alloy design strategy that integrates orthogonal experiments, machine learning, and Pareto analysis. The Cu-0.22Cr-0.23Sn-0.25Zn-0.025Si alloys (C2ZS2) developed in our previous research work is used as a research case for process optimization. A small dataset through 25 groups of orthogonal experiments was established and the support vector machine regression algorithm was used to construct a machine learning model for the relationship of aging parameters and properties. Furthermore, improved Pareto analysis was used to optimize aging parameters and accelerate alloy design efficiency. C2ZS2 alloys exhibited excellent comprehensive properties after optimized aging parameters (primary aging at 490 °C for 9 h and secondary aging at 420 °C for 4 h), achieving the combination of high strength and high electrical conductivity, with a tensile strength of (600 ± 2) MPa and an electrical conductivity of (75.1 ± 0.4) %IACS. Remarkably, it reached the dual upper limits of mechanical and electrical properties of comparable commercial EFTEC-64T-C alloys for high-end lead frame manufacturing, with tensile strength of 490–588 MPa and conductivity of 71 %IACS-75 %IACS.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"36 ","pages":"Pages 1005-1016"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid design of high-end copper alloy processes combining orthogonal experiments, machine learning, and Pareto analysis\",\"authors\":\"Peiwen Yun ,&nbsp;Huadong Fu ,&nbsp;Hongtao Zhang ,&nbsp;Jingtai Sun ,&nbsp;Menghe Zhao ,&nbsp;Jianxin Xie\",\"doi\":\"10.1016/j.jmrt.2025.03.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To overcome the challenge of using data-driven methods for alloy design in extremely limited sample data, this study proposes a rapid alloy design strategy that integrates orthogonal experiments, machine learning, and Pareto analysis. The Cu-0.22Cr-0.23Sn-0.25Zn-0.025Si alloys (C2ZS2) developed in our previous research work is used as a research case for process optimization. A small dataset through 25 groups of orthogonal experiments was established and the support vector machine regression algorithm was used to construct a machine learning model for the relationship of aging parameters and properties. Furthermore, improved Pareto analysis was used to optimize aging parameters and accelerate alloy design efficiency. C2ZS2 alloys exhibited excellent comprehensive properties after optimized aging parameters (primary aging at 490 °C for 9 h and secondary aging at 420 °C for 4 h), achieving the combination of high strength and high electrical conductivity, with a tensile strength of (600 ± 2) MPa and an electrical conductivity of (75.1 ± 0.4) %IACS. Remarkably, it reached the dual upper limits of mechanical and electrical properties of comparable commercial EFTEC-64T-C alloys for high-end lead frame manufacturing, with tensile strength of 490–588 MPa and conductivity of 71 %IACS-75 %IACS.</div></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"36 \",\"pages\":\"Pages 1005-1016\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785425006295\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425006295","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了克服在极其有限的样本数据中使用数据驱动方法进行合金设计的挑战,本研究提出了一种集成正交实验、机器学习和帕累托分析的快速合金设计策略。以我们前期研究开发的Cu-0.22Cr-0.23Sn-0.25Zn-0.025Si合金(C2ZS2)为研究案例,进行工艺优化。通过25组正交实验建立小数据集,利用支持向量机回归算法构建老化参数与性能关系的机器学习模型。利用改进的Pareto分析法优化时效参数,提高合金设计效率。优化时效参数(490℃时效9 h, 420℃时效4 h)后,C2ZS2合金表现出优异的综合性能,实现了高强度和高导电性的结合,抗拉强度为(600±2)MPa,电导率为(75.1±0.4)%IACS。值得注意的是,它达到了用于高端引线框架制造的同类商用EFTEC-64T-C合金的机械和电气性能的双重上限,抗拉强度为490-588 MPa,电导率为71% - 75% IACS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid design of high-end copper alloy processes combining orthogonal experiments, machine learning, and Pareto analysis
To overcome the challenge of using data-driven methods for alloy design in extremely limited sample data, this study proposes a rapid alloy design strategy that integrates orthogonal experiments, machine learning, and Pareto analysis. The Cu-0.22Cr-0.23Sn-0.25Zn-0.025Si alloys (C2ZS2) developed in our previous research work is used as a research case for process optimization. A small dataset through 25 groups of orthogonal experiments was established and the support vector machine regression algorithm was used to construct a machine learning model for the relationship of aging parameters and properties. Furthermore, improved Pareto analysis was used to optimize aging parameters and accelerate alloy design efficiency. C2ZS2 alloys exhibited excellent comprehensive properties after optimized aging parameters (primary aging at 490 °C for 9 h and secondary aging at 420 °C for 4 h), achieving the combination of high strength and high electrical conductivity, with a tensile strength of (600 ± 2) MPa and an electrical conductivity of (75.1 ± 0.4) %IACS. Remarkably, it reached the dual upper limits of mechanical and electrical properties of comparable commercial EFTEC-64T-C alloys for high-end lead frame manufacturing, with tensile strength of 490–588 MPa and conductivity of 71 %IACS-75 %IACS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信