Radon-Nikodým广义模糊数测度定理

IF 3.2 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Sokol Bush Kaliaj
{"title":"Radon-Nikodým广义模糊数测度定理","authors":"Sokol Bush Kaliaj","doi":"10.1016/j.fss.2025.109380","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we deal with generalized fuzzy number measures defined on Σ and taking values in the set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span>, where <span><math><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Σ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></math></span> is a complete finite measure space, <span><math><mi>c</mi><mi>w</mi><mi>k</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the family of all non-empty convex weakly compact subsets of a Banach space <em>X</em> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is such that a fuzzy set <span><math><mi>u</mi><mo>:</mo><mi>X</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is a member of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> if and only if<span><span><span><math><mrow><msup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>∈</mo><mi>c</mi><mi>w</mi><mi>k</mi><mo>(</mo><mi>X</mi><mo>)</mo><mspace></mspace><mtext> for all </mtext><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mspace></mspace><mo>(</mo><msup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>:</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mi>α</mi><mo>}</mo><mo>)</mo><mo>.</mo></mrow></math></span></span></span> We show two Radon-Nikodým theorems for such generalized fuzzy number measures in terms of Pettis integral of fuzzy mappings. The first theorem works for a <em>μ</em>-continuous generalized fuzzy number measure <span><math><mi>M</mi><mo>:</mo><mi>Σ</mi><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of bounded variation in a Banach space <em>X</em> with the Radon-Nikodým property (RNP). The next theorem shows that if a generalized fuzzy number measure <span><math><mi>M</mi><mo>:</mo><mi>Σ</mi><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is “dominated” by a generalized fuzzy number <span><math><mi>Q</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> in terms of <em>α</em>-level sets, i.e.,<span><span><span><math><mrow><msup><mrow><mo>[</mo><mi>M</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>⊂</mo><mi>μ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msup><mrow><mo>[</mo><mi>Q</mi><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mtext> for all </mtext><mi>A</mi><mo>∈</mo><mi>Σ</mi><mo>,</mo><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>,</mo></mrow></math></span></span></span> then there exists a fuzzy mapping <span><math><mi>Γ</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> Pettis integrable with <span><math><mi>M</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>F</mi><mi>P</mi><mo>)</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>A</mi></mrow></msub><mi>Γ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>d</mi><mi>μ</mi></math></span> for all <span><math><mi>A</mi><mo>∈</mo><mi>Σ</mi></math></span>, where <span><math><mo>(</mo><mi>F</mi><mi>P</mi><mo>)</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>A</mi></mrow></msub><mi>Γ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>d</mi><mi>μ</mi></math></span> is Pettis integral of fuzzy mapping Γ over <em>A</em>. The main advantage of our results is the absence of any separability assumptions.</div></div>","PeriodicalId":55130,"journal":{"name":"Fuzzy Sets and Systems","volume":"512 ","pages":"Article 109380"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radon-Nikodým theorems for generalized fuzzy number measures\",\"authors\":\"Sokol Bush Kaliaj\",\"doi\":\"10.1016/j.fss.2025.109380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we deal with generalized fuzzy number measures defined on Σ and taking values in the set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span>, where <span><math><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>Σ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></math></span> is a complete finite measure space, <span><math><mi>c</mi><mi>w</mi><mi>k</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is the family of all non-empty convex weakly compact subsets of a Banach space <em>X</em> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is such that a fuzzy set <span><math><mi>u</mi><mo>:</mo><mi>X</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is a member of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> if and only if<span><span><span><math><mrow><msup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>∈</mo><mi>c</mi><mi>w</mi><mi>k</mi><mo>(</mo><mi>X</mi><mo>)</mo><mspace></mspace><mtext> for all </mtext><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mspace></mspace><mo>(</mo><msup><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>X</mi><mo>:</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≥</mo><mi>α</mi><mo>}</mo><mo>)</mo><mo>.</mo></mrow></math></span></span></span> We show two Radon-Nikodým theorems for such generalized fuzzy number measures in terms of Pettis integral of fuzzy mappings. The first theorem works for a <em>μ</em>-continuous generalized fuzzy number measure <span><math><mi>M</mi><mo>:</mo><mi>Σ</mi><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of bounded variation in a Banach space <em>X</em> with the Radon-Nikodým property (RNP). The next theorem shows that if a generalized fuzzy number measure <span><math><mi>M</mi><mo>:</mo><mi>Σ</mi><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is “dominated” by a generalized fuzzy number <span><math><mi>Q</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> in terms of <em>α</em>-level sets, i.e.,<span><span><span><math><mrow><msup><mrow><mo>[</mo><mi>M</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mo>⊂</mo><mi>μ</mi><mo>(</mo><mi>A</mi><mo>)</mo><msup><mrow><mo>[</mo><mi>Q</mi><mo>]</mo></mrow><mrow><mi>α</mi></mrow></msup><mspace></mspace><mtext> for all </mtext><mi>A</mi><mo>∈</mo><mi>Σ</mi><mo>,</mo><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>,</mo></mrow></math></span></span></span> then there exists a fuzzy mapping <span><math><mi>Γ</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>c</mi><mi>w</mi><mi>k</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> Pettis integrable with <span><math><mi>M</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mo>(</mo><mi>F</mi><mi>P</mi><mo>)</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>A</mi></mrow></msub><mi>Γ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>d</mi><mi>μ</mi></math></span> for all <span><math><mi>A</mi><mo>∈</mo><mi>Σ</mi></math></span>, where <span><math><mo>(</mo><mi>F</mi><mi>P</mi><mo>)</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>A</mi></mrow></msub><mi>Γ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>d</mi><mi>μ</mi></math></span> is Pettis integral of fuzzy mapping Γ over <em>A</em>. The main advantage of our results is the absence of any separability assumptions.</div></div>\",\"PeriodicalId\":55130,\"journal\":{\"name\":\"Fuzzy Sets and Systems\",\"volume\":\"512 \",\"pages\":\"Article 109380\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Sets and Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165011425001198\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Sets and Systems","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165011425001198","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了在Σ上定义的广义模糊数测度,并在集合Fcwk(X)上取值,其中(Ω,Σ,μ)是一个完全有限测度空间,cwk(X)是Banach空间X的所有非空凸弱紧子集的族,Fcwk(X)使得模糊集u:X→[0,1]是Fcwk(X)的成员,当且仅当对于所有α∈(0,1)([u]α={X∈X:u(X)≥α}),模糊集u∈cwk(X)。我们用模糊映射的Pettis积分给出了这类广义模糊数测度的两个Radon-Nikodým定理。第一个定理适用于μ连续广义模糊数测度M:Σ→Fcwk(X)在Banach空间X中具有Radon-Nikodým性质(RNP)的有界变分。下一个定理表明,如果广义模糊数测度M:Σ→Fcwk(X)在α-水平集上被广义模糊数Q∈Fcwk(X)“支配”,即对于所有a∈Σ,α∈(0,1),[M(a)]α∧μ(a)[Q]α,那么对于所有a∈Σ,存在一个模糊映射Γ:Ω→Fcwk(X) Pettis可积与M(a)=(FP)∫AΓ(t)dμ,其中(FP)∫AΓ(t)dμ是模糊映射Γ在a上的Pettis积分。我们的结果的主要优势是没有任何可分性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radon-Nikodým theorems for generalized fuzzy number measures
In this paper we deal with generalized fuzzy number measures defined on Σ and taking values in the set Fcwk(X), where (Ω,Σ,μ) is a complete finite measure space, cwk(X) is the family of all non-empty convex weakly compact subsets of a Banach space X and Fcwk(X) is such that a fuzzy set u:X[0,1] is a member of Fcwk(X) if and only if[u]αcwk(X) for all α(0,1]([u]α={xX:u(x)α}). We show two Radon-Nikodým theorems for such generalized fuzzy number measures in terms of Pettis integral of fuzzy mappings. The first theorem works for a μ-continuous generalized fuzzy number measure M:ΣFcwk(X) of bounded variation in a Banach space X with the Radon-Nikodým property (RNP). The next theorem shows that if a generalized fuzzy number measure M:ΣFcwk(X) is “dominated” by a generalized fuzzy number QFcwk(X) in terms of α-level sets, i.e.,[M(A)]αμ(A)[Q]α for all AΣ,α(0,1], then there exists a fuzzy mapping Γ:ΩFcwk(X) Pettis integrable with M(A)=(FP)AΓ(t)dμ for all AΣ, where (FP)AΓ(t)dμ is Pettis integral of fuzzy mapping Γ over A. The main advantage of our results is the absence of any separability assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Sets and Systems
Fuzzy Sets and Systems 数学-计算机:理论方法
CiteScore
6.50
自引率
17.90%
发文量
321
审稿时长
6.1 months
期刊介绍: Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信