ForensicLLM:用于数字取证的本地大型语言模型

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Binaya Sharma , James Ghawaly , Kyle McCleary , Andrew M. Webb , Ibrahim Baggili
{"title":"ForensicLLM:用于数字取证的本地大型语言模型","authors":"Binaya Sharma ,&nbsp;James Ghawaly ,&nbsp;Kyle McCleary ,&nbsp;Andrew M. Webb ,&nbsp;Ibrahim Baggili","doi":"10.1016/j.fsidi.2025.301872","DOIUrl":null,"url":null,"abstract":"<div><div>Large Language Models (LLMs) excel in diverse natural language tasks but often lack specialization for fields like digital forensics. Their reliance on cloud-based APIs or high-performance computers restricts use in resource-limited environments, and response hallucinations could compromise their applicability in forensic contexts. We introduce ForensicLLM, a 4-bit quantized LLaMA-3.1–8B model fine-tuned on Q&amp;A samples extracted from digital forensic research articles and curated digital artifacts. Quantitative evaluation showed that ForensicLLM outperformed both the base LLaMA-3.1–8B model and the Retrieval Augmented Generation (RAG) model. ForensicLLM accurately attributes sources 86.6 % of the time, with 81.2 % of the responses including both authors and title. Additionally, a user survey conducted with digital forensics professionals confirmed significant improvements of ForensicLLM and RAG model over the base model. ForensicLLM showed strength in <em>“correctness”</em> and <em>“relevance”</em> metrics, while the RAG model was appreciated for providing more detailed responses. These advancements mark ForensicLLM as a transformative tool in digital forensics, elevating model performance and source attribution in critical investigative contexts.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"52 ","pages":"Article 301872"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ForensicLLM: A local large language model for digital forensics\",\"authors\":\"Binaya Sharma ,&nbsp;James Ghawaly ,&nbsp;Kyle McCleary ,&nbsp;Andrew M. Webb ,&nbsp;Ibrahim Baggili\",\"doi\":\"10.1016/j.fsidi.2025.301872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large Language Models (LLMs) excel in diverse natural language tasks but often lack specialization for fields like digital forensics. Their reliance on cloud-based APIs or high-performance computers restricts use in resource-limited environments, and response hallucinations could compromise their applicability in forensic contexts. We introduce ForensicLLM, a 4-bit quantized LLaMA-3.1–8B model fine-tuned on Q&amp;A samples extracted from digital forensic research articles and curated digital artifacts. Quantitative evaluation showed that ForensicLLM outperformed both the base LLaMA-3.1–8B model and the Retrieval Augmented Generation (RAG) model. ForensicLLM accurately attributes sources 86.6 % of the time, with 81.2 % of the responses including both authors and title. Additionally, a user survey conducted with digital forensics professionals confirmed significant improvements of ForensicLLM and RAG model over the base model. ForensicLLM showed strength in <em>“correctness”</em> and <em>“relevance”</em> metrics, while the RAG model was appreciated for providing more detailed responses. These advancements mark ForensicLLM as a transformative tool in digital forensics, elevating model performance and source attribution in critical investigative contexts.</div></div>\",\"PeriodicalId\":48481,\"journal\":{\"name\":\"Forensic Science International-Digital Investigation\",\"volume\":\"52 \",\"pages\":\"Article 301872\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Digital Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666281725000113\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281725000113","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)在各种自然语言任务中表现出色,但在数字取证等领域往往缺乏专业化。它们对基于云的api或高性能计算机的依赖限制了它们在资源有限的环境中的使用,而反应幻觉可能会损害它们在法医环境中的适用性。我们介绍了ForensicLLM,这是一个4位量化LLaMA-3.1-8B模型,对从数字法医研究文章中提取的Q&; a样本进行了微调。定量评价表明,ForensicLLM的性能优于基本的LLaMA-3.1-8B模型和检索增强生成(RAG)模型。在86.6%的时间里,ForensicLLM准确地给出了来源的属性,其中81.2%的回复包括了作者和标题。此外,与数字取证专业人员进行的用户调查证实,与基本模型相比,ForensicLLM和RAG模型有了显著改进。ForensicLLM在“正确性”和“相关性”指标上表现出了优势,而RAG模型则因提供更详细的响应而受到赞赏。这些进步标志着ForensicLLM成为数字取证的变革性工具,在关键的调查环境中提升模型性能和来源归属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ForensicLLM: A local large language model for digital forensics
Large Language Models (LLMs) excel in diverse natural language tasks but often lack specialization for fields like digital forensics. Their reliance on cloud-based APIs or high-performance computers restricts use in resource-limited environments, and response hallucinations could compromise their applicability in forensic contexts. We introduce ForensicLLM, a 4-bit quantized LLaMA-3.1–8B model fine-tuned on Q&A samples extracted from digital forensic research articles and curated digital artifacts. Quantitative evaluation showed that ForensicLLM outperformed both the base LLaMA-3.1–8B model and the Retrieval Augmented Generation (RAG) model. ForensicLLM accurately attributes sources 86.6 % of the time, with 81.2 % of the responses including both authors and title. Additionally, a user survey conducted with digital forensics professionals confirmed significant improvements of ForensicLLM and RAG model over the base model. ForensicLLM showed strength in “correctness” and “relevance” metrics, while the RAG model was appreciated for providing more detailed responses. These advancements mark ForensicLLM as a transformative tool in digital forensics, elevating model performance and source attribution in critical investigative contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信