GenNP:一个低阈值和强大的网络性能数据生成器

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Fang Yang, Tao Ma, Chunlai Ma, Nina Shu, Chao Chang, Chunsheng Liu, Tao Wu, Xingkui Du
{"title":"GenNP:一个低阈值和强大的网络性能数据生成器","authors":"Fang Yang,&nbsp;Tao Ma,&nbsp;Chunlai Ma,&nbsp;Nina Shu,&nbsp;Chao Chang,&nbsp;Chunsheng Liu,&nbsp;Tao Wu,&nbsp;Xingkui Du","doi":"10.1016/j.comnet.2025.111209","DOIUrl":null,"url":null,"abstract":"<div><div>The existing Discrete Event Simulators (DES) cannot meet the demands of modern networks for efficient, accurate, and flexible simulation. Recent <strong>m</strong>achine <strong>l</strong>earning models have demonstrated exceptional capabilities for <strong>e</strong>stimating <strong>n</strong>etwork <strong>p</strong>erformance (MLENP). However, the quality and quantity of available data greatly limit the accuracy and generalizability of ML models. After analyzing the data requirements of MLENP over the past decade and the shortcomings of existing DES, we propose a low-threshold and powerful <strong>n</strong>etwork <strong>p</strong>erformance data <strong>gen</strong>erator (GenNP), and generate a network performance dataset consisting of 10K samples. GenNP, with OMNeT++ and INET at its simulation core, integrates the configuration generation layer, simulation transformation layer, result extraction layer, and result output layer, achieving massive random generation of simulation configurations (networks, traffic, routing protocols, faults) and multi-granularity extraction of network performance data (throughput, drop, delay, jitter, routing table). We validate the robust capabilities of GenNP through a series of simulation experiments across multi-granularity (spatial, temporal), diversity (traffic models, network load, fault types, routing protocols), and efficiency (parallelism).</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"262 ","pages":"Article 111209"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GenNP: A low-threshold and powerful network performance data generator\",\"authors\":\"Fang Yang,&nbsp;Tao Ma,&nbsp;Chunlai Ma,&nbsp;Nina Shu,&nbsp;Chao Chang,&nbsp;Chunsheng Liu,&nbsp;Tao Wu,&nbsp;Xingkui Du\",\"doi\":\"10.1016/j.comnet.2025.111209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The existing Discrete Event Simulators (DES) cannot meet the demands of modern networks for efficient, accurate, and flexible simulation. Recent <strong>m</strong>achine <strong>l</strong>earning models have demonstrated exceptional capabilities for <strong>e</strong>stimating <strong>n</strong>etwork <strong>p</strong>erformance (MLENP). However, the quality and quantity of available data greatly limit the accuracy and generalizability of ML models. After analyzing the data requirements of MLENP over the past decade and the shortcomings of existing DES, we propose a low-threshold and powerful <strong>n</strong>etwork <strong>p</strong>erformance data <strong>gen</strong>erator (GenNP), and generate a network performance dataset consisting of 10K samples. GenNP, with OMNeT++ and INET at its simulation core, integrates the configuration generation layer, simulation transformation layer, result extraction layer, and result output layer, achieving massive random generation of simulation configurations (networks, traffic, routing protocols, faults) and multi-granularity extraction of network performance data (throughput, drop, delay, jitter, routing table). We validate the robust capabilities of GenNP through a series of simulation experiments across multi-granularity (spatial, temporal), diversity (traffic models, network load, fault types, routing protocols), and efficiency (parallelism).</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"262 \",\"pages\":\"Article 111209\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138912862500177X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138912862500177X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

现有的离散事件模拟器(DES)已不能满足现代网络对高效、准确、灵活仿真的要求。最近的机器学习模型在估计网络性能(MLENP)方面表现出了卓越的能力。然而,可用数据的质量和数量极大地限制了机器学习模型的准确性和泛化性。在分析了MLENP近十年的数据需求和现有DES的不足之后,我们提出了一种低阈值、功能强大的网络性能数据生成器(GenNP),并生成了一个由10K个样本组成的网络性能数据集。GenNP以omnet++和INET为仿真核心,集成了配置生成层、仿真转换层、结果提取层和结果输出层,实现了仿真配置(网络、流量、路由协议、故障)的海量随机生成和网络性能数据(吞吐量、丢包、延迟、抖动、路由表)的多粒度提取。我们通过一系列跨多粒度(空间、时间)、多样性(流量模型、网络负载、故障类型、路由协议)和效率(并行性)的仿真实验验证了GenNP的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GenNP: A low-threshold and powerful network performance data generator
The existing Discrete Event Simulators (DES) cannot meet the demands of modern networks for efficient, accurate, and flexible simulation. Recent machine learning models have demonstrated exceptional capabilities for estimating network performance (MLENP). However, the quality and quantity of available data greatly limit the accuracy and generalizability of ML models. After analyzing the data requirements of MLENP over the past decade and the shortcomings of existing DES, we propose a low-threshold and powerful network performance data generator (GenNP), and generate a network performance dataset consisting of 10K samples. GenNP, with OMNeT++ and INET at its simulation core, integrates the configuration generation layer, simulation transformation layer, result extraction layer, and result output layer, achieving massive random generation of simulation configurations (networks, traffic, routing protocols, faults) and multi-granularity extraction of network performance data (throughput, drop, delay, jitter, routing table). We validate the robust capabilities of GenNP through a series of simulation experiments across multi-granularity (spatial, temporal), diversity (traffic models, network load, fault types, routing protocols), and efficiency (parallelism).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信