Rahul Panicker, Aatam Gajjar, Nael H. El-Farra, Matthew J. Ellis
{"title":"基于终端集的零虚警模型预测控制系统网络攻击检测","authors":"Rahul Panicker, Aatam Gajjar, Nael H. El-Farra, Matthew J. Ellis","doi":"10.1016/j.jprocont.2025.103409","DOIUrl":null,"url":null,"abstract":"<div><div>The increased reliance of industrial control systems on networked components has made them more vulnerable to cyberattacks, necessitating cyberattack detection schemes specifically designed for detecting cyberattacks affecting industrial control systems. This work presents a set-membership-based detection scheme for systems under model predictive control (MPC). Specifically, we consider steady-state operation because many systems operate over long periods near a desired steady state. Provided the disturbances and measurement noise acting on the system are sufficiently small, we show that the closed-loop system under MPC is equivalent to the closed-loop system under a linear quadratic regulator, formulated with the same stage cost and weighting matrices, in a region containing the desired operating point. This equivalence is leveraged to show that the minimum robust positively invariant (mRPI) sets under both controllers are equivalent, enabling the calculation of the mRPI set for the closed-loop system under MPC. Using the mRPI set of the attack-free system, we present an attack detection scheme for systems under MPC and derive conditions under which the attack detection scheme applied to the attack-free closed-loop system does not raise an alarm. The detection scheme is applied to a simplified (linear) building space-cooling system to demonstrate that it does not raise false alarms during attack-free operation and that it successfully detects attacks when the system is subjected to a multiplicative false-data injection attack altering the data communicated over the sensor-controller link. Furthermore, the detection scheme’s applicability to nonlinear systems is assessed. Specifically, the detection scheme is applied to a nonlinear chemical process to demonstrate that the detection scheme does not raise false alarms during attack-free operation and successfully detects an attack when the process is subjected to a false-data injection cyberattack.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"149 ","pages":"Article 103409"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terminal set-based cyberattack detection in model predictive control systems with zero false alarms\",\"authors\":\"Rahul Panicker, Aatam Gajjar, Nael H. El-Farra, Matthew J. Ellis\",\"doi\":\"10.1016/j.jprocont.2025.103409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increased reliance of industrial control systems on networked components has made them more vulnerable to cyberattacks, necessitating cyberattack detection schemes specifically designed for detecting cyberattacks affecting industrial control systems. This work presents a set-membership-based detection scheme for systems under model predictive control (MPC). Specifically, we consider steady-state operation because many systems operate over long periods near a desired steady state. Provided the disturbances and measurement noise acting on the system are sufficiently small, we show that the closed-loop system under MPC is equivalent to the closed-loop system under a linear quadratic regulator, formulated with the same stage cost and weighting matrices, in a region containing the desired operating point. This equivalence is leveraged to show that the minimum robust positively invariant (mRPI) sets under both controllers are equivalent, enabling the calculation of the mRPI set for the closed-loop system under MPC. Using the mRPI set of the attack-free system, we present an attack detection scheme for systems under MPC and derive conditions under which the attack detection scheme applied to the attack-free closed-loop system does not raise an alarm. The detection scheme is applied to a simplified (linear) building space-cooling system to demonstrate that it does not raise false alarms during attack-free operation and that it successfully detects attacks when the system is subjected to a multiplicative false-data injection attack altering the data communicated over the sensor-controller link. Furthermore, the detection scheme’s applicability to nonlinear systems is assessed. Specifically, the detection scheme is applied to a nonlinear chemical process to demonstrate that the detection scheme does not raise false alarms during attack-free operation and successfully detects an attack when the process is subjected to a false-data injection cyberattack.</div></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"149 \",\"pages\":\"Article 103409\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095915242500037X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095915242500037X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Terminal set-based cyberattack detection in model predictive control systems with zero false alarms
The increased reliance of industrial control systems on networked components has made them more vulnerable to cyberattacks, necessitating cyberattack detection schemes specifically designed for detecting cyberattacks affecting industrial control systems. This work presents a set-membership-based detection scheme for systems under model predictive control (MPC). Specifically, we consider steady-state operation because many systems operate over long periods near a desired steady state. Provided the disturbances and measurement noise acting on the system are sufficiently small, we show that the closed-loop system under MPC is equivalent to the closed-loop system under a linear quadratic regulator, formulated with the same stage cost and weighting matrices, in a region containing the desired operating point. This equivalence is leveraged to show that the minimum robust positively invariant (mRPI) sets under both controllers are equivalent, enabling the calculation of the mRPI set for the closed-loop system under MPC. Using the mRPI set of the attack-free system, we present an attack detection scheme for systems under MPC and derive conditions under which the attack detection scheme applied to the attack-free closed-loop system does not raise an alarm. The detection scheme is applied to a simplified (linear) building space-cooling system to demonstrate that it does not raise false alarms during attack-free operation and that it successfully detects attacks when the system is subjected to a multiplicative false-data injection attack altering the data communicated over the sensor-controller link. Furthermore, the detection scheme’s applicability to nonlinear systems is assessed. Specifically, the detection scheme is applied to a nonlinear chemical process to demonstrate that the detection scheme does not raise false alarms during attack-free operation and successfully detects an attack when the process is subjected to a false-data injection cyberattack.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.