Sinn-wen Chen , Yi-An Lee , Cheng-Hsi Ho , Jun Zhu , Hsin-Chieh Huang , Te-Wei Lin , Chuan Zhang
{"title":"Sn-Ag-Bi-Cu四元体系相变温度","authors":"Sinn-wen Chen , Yi-An Lee , Cheng-Hsi Ho , Jun Zhu , Hsin-Chieh Huang , Te-Wei Lin , Chuan Zhang","doi":"10.1016/j.calphad.2025.102822","DOIUrl":null,"url":null,"abstract":"<div><div>Sn-Ag-Bi-Cu and its constituent systems are important material systems, especially for electronic soldering. Although these alloys have attracted significant interest for industrial applications and have been the subject of various Calphad studies, it is surprising to find that there are significant deviations observed between the calculated and experimentally determined results regarding the phase transformation temperatures. To address this issue, Sn-Ag, Sn-Bi, Sn-Cu, Sn-Ag-Bi, Sn-Ag-Cu, Sn-Bi-Cu and Sn-Ag-Bi-Cu alloys on the Sn-rich side are prepared. Simultaneous thermal analysis and holding-quenching experimental measurements are conducted to determine their liquidus temperatures and invariant reaction temperatures. The experimentally determined results are then compared with the Calphad-calculated results and utilized to improve the thermodynamic parameters in the Calphad models. The calculated results with the revised databases are in good agreement with the experimental measurements.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"89 ","pages":"Article 102822"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase transformation temperatures of Sn-Ag-Bi-Cu quaternary system\",\"authors\":\"Sinn-wen Chen , Yi-An Lee , Cheng-Hsi Ho , Jun Zhu , Hsin-Chieh Huang , Te-Wei Lin , Chuan Zhang\",\"doi\":\"10.1016/j.calphad.2025.102822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sn-Ag-Bi-Cu and its constituent systems are important material systems, especially for electronic soldering. Although these alloys have attracted significant interest for industrial applications and have been the subject of various Calphad studies, it is surprising to find that there are significant deviations observed between the calculated and experimentally determined results regarding the phase transformation temperatures. To address this issue, Sn-Ag, Sn-Bi, Sn-Cu, Sn-Ag-Bi, Sn-Ag-Cu, Sn-Bi-Cu and Sn-Ag-Bi-Cu alloys on the Sn-rich side are prepared. Simultaneous thermal analysis and holding-quenching experimental measurements are conducted to determine their liquidus temperatures and invariant reaction temperatures. The experimentally determined results are then compared with the Calphad-calculated results and utilized to improve the thermodynamic parameters in the Calphad models. The calculated results with the revised databases are in good agreement with the experimental measurements.</div></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":\"89 \",\"pages\":\"Article 102822\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0364591625000252\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591625000252","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
Sn-Ag-Bi-Cu及其组成体系是重要的材料体系,尤其适用于电子焊接。尽管这些合金已经引起了工业应用的极大兴趣,并且已经成为各种calphhad研究的主题,但令人惊讶的是,在相变温度方面,计算结果和实验确定的结果之间存在显着偏差。为了解决这一问题,在富锡侧制备了Sn-Ag、Sn-Bi、Sn-Cu、Sn-Ag- bi、Sn-Ag- cu、Sn-Bi- cu和Sn-Ag- bi - cu合金。同时进行了热分析和保温淬火实验测量,确定了它们的液相温度和不变反应温度。然后将实验确定的结果与Calphad计算结果进行比较,并用于改进Calphad模型中的热力学参数。修正数据库的计算结果与实验测量结果吻合较好。
Phase transformation temperatures of Sn-Ag-Bi-Cu quaternary system
Sn-Ag-Bi-Cu and its constituent systems are important material systems, especially for electronic soldering. Although these alloys have attracted significant interest for industrial applications and have been the subject of various Calphad studies, it is surprising to find that there are significant deviations observed between the calculated and experimentally determined results regarding the phase transformation temperatures. To address this issue, Sn-Ag, Sn-Bi, Sn-Cu, Sn-Ag-Bi, Sn-Ag-Cu, Sn-Bi-Cu and Sn-Ag-Bi-Cu alloys on the Sn-rich side are prepared. Simultaneous thermal analysis and holding-quenching experimental measurements are conducted to determine their liquidus temperatures and invariant reaction temperatures. The experimentally determined results are then compared with the Calphad-calculated results and utilized to improve the thermodynamic parameters in the Calphad models. The calculated results with the revised databases are in good agreement with the experimental measurements.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.