用于反铁磁自旋电子学的新型非共线反铁磁Mn3Al

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bing Lv , Mingsu Si , Long Cheng , Zhongjie Yan , Xiaolin Li , Cunxu Gao
{"title":"用于反铁磁自旋电子学的新型非共线反铁磁Mn3Al","authors":"Bing Lv ,&nbsp;Mingsu Si ,&nbsp;Long Cheng ,&nbsp;Zhongjie Yan ,&nbsp;Xiaolin Li ,&nbsp;Cunxu Gao","doi":"10.1016/j.actamat.2025.120939","DOIUrl":null,"url":null,"abstract":"<div><div>Hexagonal noncollinear antiferromagnets, such as Mn<sub>3</sub>Sn, Mn<sub>3</sub>Ge, and Mn<sub>3</sub>Ga, have garnered significant attention in recent years due to their potential for supplying large anisotropic anomalous and spin Hall conductance. In particular, noncollinear antiferromagnetic tunnel junctions have been fabricated, demonstrating their applications in antiferromagnetic spintronics in future. However, hexagonal Mn<sub>3</sub>Al, a noncollinear antiferromagnet that has non-heavy metal elements, has never been reported. In this study, we not only predict the noncollinear antiferromagnet Mn<sub>3</sub>Al through first-principles calculations and experimentally confirm the existence of hexagonal Mn<sub>3</sub>Al, but also predict the existence of large anomalous Hall conductance for Mn<sub>3</sub>Al. Our calculations reveal that Mn<sub>3</sub>Al can be utilized in antiferromagnetic tunnel junctions and possesses anisotropic anomalous Hall conductance. Our calculations show a large <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>z</mi><mi>x</mi></mrow></msub></math></span> = 1398 <span><math><msup><mrow><mi>(Ω⋅cm)</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> above the Fermi level, which is caused by the Weyl points in momentum space for Mn<sub>3</sub>Al. <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>z</mi><mi>x</mi></mrow></msub></math></span> could be raised from 99.7 <span><math><msup><mrow><mi>(Ω⋅cm)</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for Mn<sub>3</sub>Al to 412 <span><math><msup><mrow><mi>(Ω⋅cm)</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for Mn<sub>3</sub>Al<sub>0.5</sub>Si<sub>0.5</sub> at Fermi level by substituting the Al atoms with Si atoms. More Si content further raises the value of <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>z</mi><mi>x</mi></mrow></msub></math></span> to a maximum 952 <span><math><msup><mrow><mi>(Ω⋅cm)</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for Mn<sub>3</sub>Al<sub>0.35</sub>Si<sub>0.65</sub> within the rigid band approximation. Furthermore, the films grown on Si(111) substrates suggest compatibility with semiconductor devices, thus broadening the applications of Mn<sub>3</sub>Al and expanding the family of noncollinear antiferromagnets.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"290 ","pages":"Article 120939"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New noncollinear antiferromagnet Mn3Al for antiferromagnetic spintronics\",\"authors\":\"Bing Lv ,&nbsp;Mingsu Si ,&nbsp;Long Cheng ,&nbsp;Zhongjie Yan ,&nbsp;Xiaolin Li ,&nbsp;Cunxu Gao\",\"doi\":\"10.1016/j.actamat.2025.120939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hexagonal noncollinear antiferromagnets, such as Mn<sub>3</sub>Sn, Mn<sub>3</sub>Ge, and Mn<sub>3</sub>Ga, have garnered significant attention in recent years due to their potential for supplying large anisotropic anomalous and spin Hall conductance. In particular, noncollinear antiferromagnetic tunnel junctions have been fabricated, demonstrating their applications in antiferromagnetic spintronics in future. However, hexagonal Mn<sub>3</sub>Al, a noncollinear antiferromagnet that has non-heavy metal elements, has never been reported. In this study, we not only predict the noncollinear antiferromagnet Mn<sub>3</sub>Al through first-principles calculations and experimentally confirm the existence of hexagonal Mn<sub>3</sub>Al, but also predict the existence of large anomalous Hall conductance for Mn<sub>3</sub>Al. Our calculations reveal that Mn<sub>3</sub>Al can be utilized in antiferromagnetic tunnel junctions and possesses anisotropic anomalous Hall conductance. Our calculations show a large <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>z</mi><mi>x</mi></mrow></msub></math></span> = 1398 <span><math><msup><mrow><mi>(Ω⋅cm)</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> above the Fermi level, which is caused by the Weyl points in momentum space for Mn<sub>3</sub>Al. <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>z</mi><mi>x</mi></mrow></msub></math></span> could be raised from 99.7 <span><math><msup><mrow><mi>(Ω⋅cm)</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for Mn<sub>3</sub>Al to 412 <span><math><msup><mrow><mi>(Ω⋅cm)</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for Mn<sub>3</sub>Al<sub>0.5</sub>Si<sub>0.5</sub> at Fermi level by substituting the Al atoms with Si atoms. More Si content further raises the value of <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>z</mi><mi>x</mi></mrow></msub></math></span> to a maximum 952 <span><math><msup><mrow><mi>(Ω⋅cm)</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for Mn<sub>3</sub>Al<sub>0.35</sub>Si<sub>0.65</sub> within the rigid band approximation. Furthermore, the films grown on Si(111) substrates suggest compatibility with semiconductor devices, thus broadening the applications of Mn<sub>3</sub>Al and expanding the family of noncollinear antiferromagnets.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"290 \",\"pages\":\"Article 120939\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425002319\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002319","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

六方非共线反铁磁体,如Mn3Sn, Mn3Ge和Mn3Ga,由于它们具有提供大的各向异性异常和自旋霍尔电导的潜力,近年来引起了极大的关注。特别是非共线反铁磁隧道结的制备,展示了其在反铁磁自旋电子学中的应用前景。然而,六方Mn3Al这种含有非重金属元素的非共线反铁磁体尚未被报道。在本研究中,我们不仅通过第一性原理计算预测了非共线反铁磁体Mn3Al,并通过实验证实了六方Mn3Al的存在,而且预测了Mn3Al存在较大的异常霍尔电导。我们的计算表明,Mn3Al可以用于反铁磁隧道结,并具有各向异性的异常霍尔电导。计算表明,Mn3Al在费米能级以上有一个较大的σzx = 1398 (Ω⋅cm)−1,这是由动量空间中的Weyl点引起的。在费米能级上,用Si原子代替Al原子可以使Mn3Al的σzx从99.7 (Ω⋅cm)−1提高到Mn3Al0.5Si0.5的412 (Ω⋅cm)−1。随着Si含量的增加,Mn3Al0.35Si0.65的σzx值在刚性带近似下达到最大值952 (Ω⋅cm)−1。此外,在Si(111)衬底上生长的薄膜表明与半导体器件的兼容性,从而拓宽了Mn3Al的应用范围并扩展了非共线反铁磁体家族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New noncollinear antiferromagnet Mn3Al for antiferromagnetic spintronics

New noncollinear antiferromagnet Mn3Al for antiferromagnetic spintronics

New noncollinear antiferromagnet Mn3Al for antiferromagnetic spintronics
Hexagonal noncollinear antiferromagnets, such as Mn3Sn, Mn3Ge, and Mn3Ga, have garnered significant attention in recent years due to their potential for supplying large anisotropic anomalous and spin Hall conductance. In particular, noncollinear antiferromagnetic tunnel junctions have been fabricated, demonstrating their applications in antiferromagnetic spintronics in future. However, hexagonal Mn3Al, a noncollinear antiferromagnet that has non-heavy metal elements, has never been reported. In this study, we not only predict the noncollinear antiferromagnet Mn3Al through first-principles calculations and experimentally confirm the existence of hexagonal Mn3Al, but also predict the existence of large anomalous Hall conductance for Mn3Al. Our calculations reveal that Mn3Al can be utilized in antiferromagnetic tunnel junctions and possesses anisotropic anomalous Hall conductance. Our calculations show a large σzx = 1398 (Ω⋅cm)1 above the Fermi level, which is caused by the Weyl points in momentum space for Mn3Al. σzx could be raised from 99.7 (Ω⋅cm)1 for Mn3Al to 412 (Ω⋅cm)1 for Mn3Al0.5Si0.5 at Fermi level by substituting the Al atoms with Si atoms. More Si content further raises the value of σzx to a maximum 952 (Ω⋅cm)1 for Mn3Al0.35Si0.65 within the rigid band approximation. Furthermore, the films grown on Si(111) substrates suggest compatibility with semiconductor devices, thus broadening the applications of Mn3Al and expanding the family of noncollinear antiferromagnets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信