Felix C Oettl, Bálint Zsidai, Jacob F Oeding, Michael T Hirschmann, Robert Feldt, Thomas Tischer, Kristian Samuelsson
{"title":"超越传统的骨科数据分析:人工智能、多模态模型和持续监测。","authors":"Felix C Oettl, Bálint Zsidai, Jacob F Oeding, Michael T Hirschmann, Robert Feldt, Thomas Tischer, Kristian Samuelsson","doi":"10.1002/ksa.12657","DOIUrl":null,"url":null,"abstract":"<p><p>Multimodal artificial intelligence (AI) has the potential to revolutionise healthcare by enabling the simultaneous processing and integration of various data types, including medical imaging, electronic health records, genomic information and real-time data. This review explores the current applications and future potential of multimodal AI across healthcare, with a particular focus on orthopaedic surgery. In presurgical planning, multimodal AI has demonstrated significant improvements in diagnostic accuracy and risk prediction, with studies reporting an Area under the receiving operator curve presenting good to excellent performance across various orthopaedic conditions. Intraoperative applications leverage advanced imaging and tracking technologies to enhance surgical precision, while postoperative care has been advanced through continuous patient monitoring and early detection of complications. Despite these advances, significant challenges remain in data integration, standardisation, and privacy protection. Technical solutions such as federated learning (allowing decentralisation of models) and edge computing (allowing data analysis to happen on site or closer to site instead of multipurpose datacenters) are being developed to address these concerns while maintaining compliance with regulatory frameworks. As this field continues to evolve, the integration of multimodal AI promises to advance personalised medicine, improve patient outcomes, and transform healthcare delivery through more comprehensive and nuanced analysis of patient data. Level of Evidence: Level V.</p>","PeriodicalId":17880,"journal":{"name":"Knee Surgery, Sports Traumatology, Arthroscopy","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond traditional orthopaedic data analysis: AI, multimodal models and continuous monitoring.\",\"authors\":\"Felix C Oettl, Bálint Zsidai, Jacob F Oeding, Michael T Hirschmann, Robert Feldt, Thomas Tischer, Kristian Samuelsson\",\"doi\":\"10.1002/ksa.12657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multimodal artificial intelligence (AI) has the potential to revolutionise healthcare by enabling the simultaneous processing and integration of various data types, including medical imaging, electronic health records, genomic information and real-time data. This review explores the current applications and future potential of multimodal AI across healthcare, with a particular focus on orthopaedic surgery. In presurgical planning, multimodal AI has demonstrated significant improvements in diagnostic accuracy and risk prediction, with studies reporting an Area under the receiving operator curve presenting good to excellent performance across various orthopaedic conditions. Intraoperative applications leverage advanced imaging and tracking technologies to enhance surgical precision, while postoperative care has been advanced through continuous patient monitoring and early detection of complications. Despite these advances, significant challenges remain in data integration, standardisation, and privacy protection. Technical solutions such as federated learning (allowing decentralisation of models) and edge computing (allowing data analysis to happen on site or closer to site instead of multipurpose datacenters) are being developed to address these concerns while maintaining compliance with regulatory frameworks. As this field continues to evolve, the integration of multimodal AI promises to advance personalised medicine, improve patient outcomes, and transform healthcare delivery through more comprehensive and nuanced analysis of patient data. Level of Evidence: Level V.</p>\",\"PeriodicalId\":17880,\"journal\":{\"name\":\"Knee Surgery, Sports Traumatology, Arthroscopy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knee Surgery, Sports Traumatology, Arthroscopy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ksa.12657\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knee Surgery, Sports Traumatology, Arthroscopy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ksa.12657","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Beyond traditional orthopaedic data analysis: AI, multimodal models and continuous monitoring.
Multimodal artificial intelligence (AI) has the potential to revolutionise healthcare by enabling the simultaneous processing and integration of various data types, including medical imaging, electronic health records, genomic information and real-time data. This review explores the current applications and future potential of multimodal AI across healthcare, with a particular focus on orthopaedic surgery. In presurgical planning, multimodal AI has demonstrated significant improvements in diagnostic accuracy and risk prediction, with studies reporting an Area under the receiving operator curve presenting good to excellent performance across various orthopaedic conditions. Intraoperative applications leverage advanced imaging and tracking technologies to enhance surgical precision, while postoperative care has been advanced through continuous patient monitoring and early detection of complications. Despite these advances, significant challenges remain in data integration, standardisation, and privacy protection. Technical solutions such as federated learning (allowing decentralisation of models) and edge computing (allowing data analysis to happen on site or closer to site instead of multipurpose datacenters) are being developed to address these concerns while maintaining compliance with regulatory frameworks. As this field continues to evolve, the integration of multimodal AI promises to advance personalised medicine, improve patient outcomes, and transform healthcare delivery through more comprehensive and nuanced analysis of patient data. Level of Evidence: Level V.
期刊介绍:
Few other areas of orthopedic surgery and traumatology have undergone such a dramatic evolution in the last 10 years as knee surgery, arthroscopy and sports traumatology. Ranked among the top 33% of journals in both Orthopedics and Sports Sciences, the goal of this European journal is to publish papers about innovative knee surgery, sports trauma surgery and arthroscopy. Each issue features a series of peer-reviewed articles that deal with diagnosis and management and with basic research. Each issue also contains at least one review article about an important clinical problem. Case presentations or short notes about technical innovations are also accepted for publication.
The articles cover all aspects of knee surgery and all types of sports trauma; in addition, epidemiology, diagnosis, treatment and prevention, and all types of arthroscopy (not only the knee but also the shoulder, elbow, wrist, hip, ankle, etc.) are addressed. Articles on new diagnostic techniques such as MRI and ultrasound and high-quality articles about the biomechanics of joints, muscles and tendons are included. Although this is largely a clinical journal, it is also open to basic research with clinical relevance.
Because the journal is supported by a distinguished European Editorial Board, assisted by an international Advisory Board, you can be assured that the journal maintains the highest standards.
Official Clinical Journal of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA).