利用机器学习预测接受根治性膀胱切除术的膀胱癌患者的癌症特异性死亡率:一项基于 SEER 的研究。

IF 3.4 2区 医学 Q2 ONCOLOGY
Lei Dai, Kun Ye, Gaosheng Yao, Juan Lin, Zhiping Tan, Jinhuan Wei, Yanchang Hu, Junhang Luo, Yong Fang, Wei Chen
{"title":"利用机器学习预测接受根治性膀胱切除术的膀胱癌患者的癌症特异性死亡率:一项基于 SEER 的研究。","authors":"Lei Dai, Kun Ye, Gaosheng Yao, Juan Lin, Zhiping Tan, Jinhuan Wei, Yanchang Hu, Junhang Luo, Yong Fang, Wei Chen","doi":"10.1186/s12885-025-13942-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurately assessing the prognosis of bladder cancer patients after radical cystectomy has important clinical and research implications. Current models, based on traditional statistical approaches and complex variables, have limited performance. We aimed to develop a machine learning (ML)-based prognostic model to predict 5-year cancer-specific mortality (CSM) in bladder cancer patients undergoing radical cystectomy, and compare its performance with current validated models.</p><p><strong>Methods: </strong>Patients were selected from the Surveillance, Epidemiology, and End Results database and the First Affiliated Hospital of Sun Yat-sen University for model construction and validation. We used univariate and multivariate Cox regression to select variables with independent prognostic significance for inclusion in the model's construction. Six ML algorithms and Cox proportional hazards regression were used to construct prediction models. Concordance index (C-index) and Brier scores were used to compare the discrimination and calibration of these models. The Shapley additive explanation method was used to explain the best-performing model. Finally, we compared this model with three existing prognostic models in urothelial carcinoma patients using C-index, area under the receiver operating characteristic curve (AUC), Brier scores, calibration curves, and decision curve analysis (DCA).</p><p><strong>Results: </strong>This study included 8,380 patients, with 6,656 in the training set, 1,664 in the internal validation set, and 60 in the external validation set. Eight features were ultimately identified to build models. The Light Gradient Boosting Machine (LightGBM) model showed the best performance in predicting 5-year CSM in bladder cancer patients undergoing radical cystectomy (internal validation: C-index = 0.723, Brier score = 0.191; external validation: C-index = 0.791, Brier score = 0.134). The lymph node density and tumor stage have the most significant impact on the prediction. In comparison with current validated models, our model also demonstrated the best discrimination and calibration (internal validation: C-index = 0.718, AUC = 0.779, Brier score = 0.191; external validation: C-index = 0.789, AUC = 0.884, Brier score = 0.137). Finally, calibration curves and DCA exhibited better predictive performance as well.</p><p><strong>Conclusions: </strong>We successfully developed an explainable ML model for predicting 5-year CSM after radical cystectomy in bladder cancer patients, and it demonstrated better performance compared to existing models.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"523"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929216/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using machine learning for predicting cancer-specific mortality in bladder cancer patients undergoing radical cystectomy: a SEER-based study.\",\"authors\":\"Lei Dai, Kun Ye, Gaosheng Yao, Juan Lin, Zhiping Tan, Jinhuan Wei, Yanchang Hu, Junhang Luo, Yong Fang, Wei Chen\",\"doi\":\"10.1186/s12885-025-13942-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurately assessing the prognosis of bladder cancer patients after radical cystectomy has important clinical and research implications. Current models, based on traditional statistical approaches and complex variables, have limited performance. We aimed to develop a machine learning (ML)-based prognostic model to predict 5-year cancer-specific mortality (CSM) in bladder cancer patients undergoing radical cystectomy, and compare its performance with current validated models.</p><p><strong>Methods: </strong>Patients were selected from the Surveillance, Epidemiology, and End Results database and the First Affiliated Hospital of Sun Yat-sen University for model construction and validation. We used univariate and multivariate Cox regression to select variables with independent prognostic significance for inclusion in the model's construction. Six ML algorithms and Cox proportional hazards regression were used to construct prediction models. Concordance index (C-index) and Brier scores were used to compare the discrimination and calibration of these models. The Shapley additive explanation method was used to explain the best-performing model. Finally, we compared this model with three existing prognostic models in urothelial carcinoma patients using C-index, area under the receiver operating characteristic curve (AUC), Brier scores, calibration curves, and decision curve analysis (DCA).</p><p><strong>Results: </strong>This study included 8,380 patients, with 6,656 in the training set, 1,664 in the internal validation set, and 60 in the external validation set. Eight features were ultimately identified to build models. The Light Gradient Boosting Machine (LightGBM) model showed the best performance in predicting 5-year CSM in bladder cancer patients undergoing radical cystectomy (internal validation: C-index = 0.723, Brier score = 0.191; external validation: C-index = 0.791, Brier score = 0.134). The lymph node density and tumor stage have the most significant impact on the prediction. In comparison with current validated models, our model also demonstrated the best discrimination and calibration (internal validation: C-index = 0.718, AUC = 0.779, Brier score = 0.191; external validation: C-index = 0.789, AUC = 0.884, Brier score = 0.137). Finally, calibration curves and DCA exhibited better predictive performance as well.</p><p><strong>Conclusions: </strong>We successfully developed an explainable ML model for predicting 5-year CSM after radical cystectomy in bladder cancer patients, and it demonstrated better performance compared to existing models.</p>\",\"PeriodicalId\":9131,\"journal\":{\"name\":\"BMC Cancer\",\"volume\":\"25 1\",\"pages\":\"523\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929216/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12885-025-13942-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13942-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using machine learning for predicting cancer-specific mortality in bladder cancer patients undergoing radical cystectomy: a SEER-based study.

Background: Accurately assessing the prognosis of bladder cancer patients after radical cystectomy has important clinical and research implications. Current models, based on traditional statistical approaches and complex variables, have limited performance. We aimed to develop a machine learning (ML)-based prognostic model to predict 5-year cancer-specific mortality (CSM) in bladder cancer patients undergoing radical cystectomy, and compare its performance with current validated models.

Methods: Patients were selected from the Surveillance, Epidemiology, and End Results database and the First Affiliated Hospital of Sun Yat-sen University for model construction and validation. We used univariate and multivariate Cox regression to select variables with independent prognostic significance for inclusion in the model's construction. Six ML algorithms and Cox proportional hazards regression were used to construct prediction models. Concordance index (C-index) and Brier scores were used to compare the discrimination and calibration of these models. The Shapley additive explanation method was used to explain the best-performing model. Finally, we compared this model with three existing prognostic models in urothelial carcinoma patients using C-index, area under the receiver operating characteristic curve (AUC), Brier scores, calibration curves, and decision curve analysis (DCA).

Results: This study included 8,380 patients, with 6,656 in the training set, 1,664 in the internal validation set, and 60 in the external validation set. Eight features were ultimately identified to build models. The Light Gradient Boosting Machine (LightGBM) model showed the best performance in predicting 5-year CSM in bladder cancer patients undergoing radical cystectomy (internal validation: C-index = 0.723, Brier score = 0.191; external validation: C-index = 0.791, Brier score = 0.134). The lymph node density and tumor stage have the most significant impact on the prediction. In comparison with current validated models, our model also demonstrated the best discrimination and calibration (internal validation: C-index = 0.718, AUC = 0.779, Brier score = 0.191; external validation: C-index = 0.789, AUC = 0.884, Brier score = 0.137). Finally, calibration curves and DCA exhibited better predictive performance as well.

Conclusions: We successfully developed an explainable ML model for predicting 5-year CSM after radical cystectomy in bladder cancer patients, and it demonstrated better performance compared to existing models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Cancer
BMC Cancer 医学-肿瘤学
CiteScore
6.00
自引率
2.60%
发文量
1204
审稿时长
6.8 months
期刊介绍: BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信