{"title":"基于结构约束的层次深势模型的高效粗粒度建模。","authors":"Qi Huang, Yedi Li, Lei Zhu, Wenjie Yu","doi":"10.1021/acs.jcim.4c02042","DOIUrl":null,"url":null,"abstract":"<p><p>Coarse-grained molecular dynamics is a powerful approach for simulating large-scale systems by reducing the number of degrees of freedom. Nonetheless, the development of accurate coarse-grained force fields remains challenging, particularly for complex systems, such as polymers. In this study, we introduce a novel framework, hierarchical deep potential with structure constraints (HDP-SC), designed to construct coarse-grained force fields for polymer materials. Our methodology integrates a prior energy term obtained through direct Boltzmann inversion with a deep neural network potential, which is trained using hierarchical bead environment descriptors. This framework facilitates the reproduction of structural distributions and the potential of mean force, thus enhancing the accuracy and efficiency of the coarse-grained model. We validate our approach using polystyrene systems, demonstrating that the HDP-SC model not only successfully reproduces the structural properties of these systems but also remains applicable at larger scales. Our findings underscore the promise of machine learning-based techniques in advancing the development of coarse-grained force fields for polymer materials.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"3203-3214"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Deep Potential with Structure Constraints for Efficient Coarse-Grained Modeling.\",\"authors\":\"Qi Huang, Yedi Li, Lei Zhu, Wenjie Yu\",\"doi\":\"10.1021/acs.jcim.4c02042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coarse-grained molecular dynamics is a powerful approach for simulating large-scale systems by reducing the number of degrees of freedom. Nonetheless, the development of accurate coarse-grained force fields remains challenging, particularly for complex systems, such as polymers. In this study, we introduce a novel framework, hierarchical deep potential with structure constraints (HDP-SC), designed to construct coarse-grained force fields for polymer materials. Our methodology integrates a prior energy term obtained through direct Boltzmann inversion with a deep neural network potential, which is trained using hierarchical bead environment descriptors. This framework facilitates the reproduction of structural distributions and the potential of mean force, thus enhancing the accuracy and efficiency of the coarse-grained model. We validate our approach using polystyrene systems, demonstrating that the HDP-SC model not only successfully reproduces the structural properties of these systems but also remains applicable at larger scales. Our findings underscore the promise of machine learning-based techniques in advancing the development of coarse-grained force fields for polymer materials.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"3203-3214\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c02042\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02042","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Hierarchical Deep Potential with Structure Constraints for Efficient Coarse-Grained Modeling.
Coarse-grained molecular dynamics is a powerful approach for simulating large-scale systems by reducing the number of degrees of freedom. Nonetheless, the development of accurate coarse-grained force fields remains challenging, particularly for complex systems, such as polymers. In this study, we introduce a novel framework, hierarchical deep potential with structure constraints (HDP-SC), designed to construct coarse-grained force fields for polymer materials. Our methodology integrates a prior energy term obtained through direct Boltzmann inversion with a deep neural network potential, which is trained using hierarchical bead environment descriptors. This framework facilitates the reproduction of structural distributions and the potential of mean force, thus enhancing the accuracy and efficiency of the coarse-grained model. We validate our approach using polystyrene systems, demonstrating that the HDP-SC model not only successfully reproduces the structural properties of these systems but also remains applicable at larger scales. Our findings underscore the promise of machine learning-based techniques in advancing the development of coarse-grained force fields for polymer materials.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.