{"title":"Dark-ControlNet: 基于暗通道先验的增强型去毛刺通用插件","authors":"Yu Yang, Xuesong Yin, Yigang Wang","doi":"10.1007/s10489-025-06439-9","DOIUrl":null,"url":null,"abstract":"<div><p>Existing dehazing models have excellent performance in synthetic scenes but still face the challenge of low robustness in real scenes. In this paper, we propose Dark-ControlNet, a generalized and enhanced dehazing plug-in that uses the dark channel prior as a control condition, which can be deployed on existing dehazing models and can be simply fine-tuned to enhance their robustness in real scenes while improving their dehazing performance. We first freeze the backbone network to preserve its encoding and decoding capabilities and input the dark channel prior with high robustness as conditional information to the plug-in network to obtain prior knowledge. Then, we fuse the dark channel prior features into the backbone network in the form of mean-variance alignment via the Haze&Dark(HD) module and guide the backbone network to decode clear images by fine-tuning the plug-in network. The experimental results show that the existing dehazing model enhanced by Dark-ControlNet performs well on synthetic datasets and real datasets.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dark-ControlNet: an enhanced dehazing universal plug-in based on the dark channel prior\",\"authors\":\"Yu Yang, Xuesong Yin, Yigang Wang\",\"doi\":\"10.1007/s10489-025-06439-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Existing dehazing models have excellent performance in synthetic scenes but still face the challenge of low robustness in real scenes. In this paper, we propose Dark-ControlNet, a generalized and enhanced dehazing plug-in that uses the dark channel prior as a control condition, which can be deployed on existing dehazing models and can be simply fine-tuned to enhance their robustness in real scenes while improving their dehazing performance. We first freeze the backbone network to preserve its encoding and decoding capabilities and input the dark channel prior with high robustness as conditional information to the plug-in network to obtain prior knowledge. Then, we fuse the dark channel prior features into the backbone network in the form of mean-variance alignment via the Haze&Dark(HD) module and guide the backbone network to decode clear images by fine-tuning the plug-in network. The experimental results show that the existing dehazing model enhanced by Dark-ControlNet performs well on synthetic datasets and real datasets.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06439-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06439-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dark-ControlNet: an enhanced dehazing universal plug-in based on the dark channel prior
Existing dehazing models have excellent performance in synthetic scenes but still face the challenge of low robustness in real scenes. In this paper, we propose Dark-ControlNet, a generalized and enhanced dehazing plug-in that uses the dark channel prior as a control condition, which can be deployed on existing dehazing models and can be simply fine-tuned to enhance their robustness in real scenes while improving their dehazing performance. We first freeze the backbone network to preserve its encoding and decoding capabilities and input the dark channel prior with high robustness as conditional information to the plug-in network to obtain prior knowledge. Then, we fuse the dark channel prior features into the backbone network in the form of mean-variance alignment via the Haze&Dark(HD) module and guide the backbone network to decode clear images by fine-tuning the plug-in network. The experimental results show that the existing dehazing model enhanced by Dark-ControlNet performs well on synthetic datasets and real datasets.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.