A. Vatolin, N. Gerasimenko, A. Ianina, K. Vorontsov
{"title":"RuSciBench:俄语和英语科学文献表示的开放基准","authors":"A. Vatolin, N. Gerasimenko, A. Ianina, K. Vorontsov","doi":"10.1134/S1064562424602191","DOIUrl":null,"url":null,"abstract":"<p>Sharing scientific knowledge in the community is an important endeavor. However, most papers are written in English, which makes dissemination of knowledge in countries where English is not spoken by the majority of people harder. Nowadays, machine translation and language models may help to solve this problem, but it is still complicated to train and evaluate models in languages other than English with no or little data in the required language. To address this, we propose the first benchmark for evaluating models on scientific texts in Russian. It consists of papers from Russian electronic library of scientific publications. We also present a set of tasks which can be used to fine-tune various models on our data and provide a detailed comparison between state-of-the-art models on our benchmark.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 1 supplement","pages":"S251 - S260"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1064562424602191.pdf","citationCount":"0","resultStr":"{\"title\":\"RuSciBench: Open Benchmark for Russian and English Scientific Document Representations\",\"authors\":\"A. Vatolin, N. Gerasimenko, A. Ianina, K. Vorontsov\",\"doi\":\"10.1134/S1064562424602191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sharing scientific knowledge in the community is an important endeavor. However, most papers are written in English, which makes dissemination of knowledge in countries where English is not spoken by the majority of people harder. Nowadays, machine translation and language models may help to solve this problem, but it is still complicated to train and evaluate models in languages other than English with no or little data in the required language. To address this, we propose the first benchmark for evaluating models on scientific texts in Russian. It consists of papers from Russian electronic library of scientific publications. We also present a set of tasks which can be used to fine-tune various models on our data and provide a detailed comparison between state-of-the-art models on our benchmark.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"110 1 supplement\",\"pages\":\"S251 - S260\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S1064562424602191.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424602191\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424602191","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
RuSciBench: Open Benchmark for Russian and English Scientific Document Representations
Sharing scientific knowledge in the community is an important endeavor. However, most papers are written in English, which makes dissemination of knowledge in countries where English is not spoken by the majority of people harder. Nowadays, machine translation and language models may help to solve this problem, but it is still complicated to train and evaluate models in languages other than English with no or little data in the required language. To address this, we propose the first benchmark for evaluating models on scientific texts in Russian. It consists of papers from Russian electronic library of scientific publications. We also present a set of tasks which can be used to fine-tune various models on our data and provide a detailed comparison between state-of-the-art models on our benchmark.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.