对称布尔函数的灵敏度

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Guoliang Xu, Mengsi Zhang, Binbin Zhang, Tianyin Wang, Yumei Zhang
{"title":"对称布尔函数的灵敏度","authors":"Guoliang Xu,&nbsp;Mengsi Zhang,&nbsp;Binbin Zhang,&nbsp;Tianyin Wang,&nbsp;Yumei Zhang","doi":"10.1007/s11128-025-04714-9","DOIUrl":null,"url":null,"abstract":"<div><p>In quantum computing theory, the well-known Deutsch’s problem and Deutsch–Jozsa problem can be equivalent to symmetric Boolean functions. Meanwhile, sensitivity of Boolean functions is a quite important complexity measure in the query model. So far, whether symmetry means high-sensitivity problems is still considered as a challenge. In symmetric setting, based on whether all inputs in <span>\\(\\{0,1\\}^{n}\\)</span> are defined, this paper investigates sensitivity of total and partial Boolean functions, respectively. Firstly, we point out that the computation of sensitivity requires at most <span>\\(n+1\\)</span> classical queries or <i>n</i> quantum queries. Secondly, we show that the lower bound of sensitivity is not less than <span>\\(\\frac{n}{2}\\)</span> except for the sensitivity 0. Finally, we discover and prove some non-trivial bounds on the number of symmetric (total and partial) Boolean functions with each possible sensitivity.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity of symmetric Boolean functions\",\"authors\":\"Guoliang Xu,&nbsp;Mengsi Zhang,&nbsp;Binbin Zhang,&nbsp;Tianyin Wang,&nbsp;Yumei Zhang\",\"doi\":\"10.1007/s11128-025-04714-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In quantum computing theory, the well-known Deutsch’s problem and Deutsch–Jozsa problem can be equivalent to symmetric Boolean functions. Meanwhile, sensitivity of Boolean functions is a quite important complexity measure in the query model. So far, whether symmetry means high-sensitivity problems is still considered as a challenge. In symmetric setting, based on whether all inputs in <span>\\\\(\\\\{0,1\\\\}^{n}\\\\)</span> are defined, this paper investigates sensitivity of total and partial Boolean functions, respectively. Firstly, we point out that the computation of sensitivity requires at most <span>\\\\(n+1\\\\)</span> classical queries or <i>n</i> quantum queries. Secondly, we show that the lower bound of sensitivity is not less than <span>\\\\(\\\\frac{n}{2}\\\\)</span> except for the sensitivity 0. Finally, we discover and prove some non-trivial bounds on the number of symmetric (total and partial) Boolean functions with each possible sensitivity.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04714-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04714-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在量子计算理论中,众所周知的Deutsch问题和Deutsch - jozsa问题可以等价于对称布尔函数。同时,布尔函数的灵敏度是查询模型中一个非常重要的复杂度度量。到目前为止,对称性是否意味着高灵敏度问题仍然被认为是一个挑战。在对称设置下,基于\(\{0,1\}^{n}\)中是否定义了所有输入,分别研究了布尔函数的全布尔函数和部分布尔函数的灵敏度。首先,我们指出灵敏度的计算最多需要\(n+1\)经典查询或n个量子查询。其次,除灵敏度为0外,灵敏度的下界均不小于\(\frac{n}{2}\)。最后,我们发现并证明了具有每种可能灵敏度的对称(全部和部分)布尔函数的数目的一些非平凡界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity of symmetric Boolean functions

In quantum computing theory, the well-known Deutsch’s problem and Deutsch–Jozsa problem can be equivalent to symmetric Boolean functions. Meanwhile, sensitivity of Boolean functions is a quite important complexity measure in the query model. So far, whether symmetry means high-sensitivity problems is still considered as a challenge. In symmetric setting, based on whether all inputs in \(\{0,1\}^{n}\) are defined, this paper investigates sensitivity of total and partial Boolean functions, respectively. Firstly, we point out that the computation of sensitivity requires at most \(n+1\) classical queries or n quantum queries. Secondly, we show that the lower bound of sensitivity is not less than \(\frac{n}{2}\) except for the sensitivity 0. Finally, we discover and prove some non-trivial bounds on the number of symmetric (total and partial) Boolean functions with each possible sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信