基于深度学习的手写体汉字分类方法

IF 0.5 4区 数学 Q3 MATHEMATICS
B. Kriuk, F. Kriuk
{"title":"基于深度学习的手写体汉字分类方法","authors":"B. Kriuk,&nbsp;F. Kriuk","doi":"10.1134/S1064562424602245","DOIUrl":null,"url":null,"abstract":"<p>Handwritten character recognition (HCR) is a challenging problem for machine learning researchers. Unlike printed text data, handwritten character datasets have more variation due to human-introduced bias. With numerous unique character classes present, some data, such as Logographic Scripts or Sino-Korean character sequences, bring new complications to the HCR problem. The classification task on such datasets requires the model to learn high-complexity details of the images that share similar features. With recent advances in computational resource availability and further computer vision theory development, some research teams have effectively addressed the arising challenges. Although known for achieving high accuracy while keeping the number of parameters small, many common approaches are still not generalizable and use dataset-specific solutions to achieve better results. Due to complex structure, existing methods frequently prevent the solutions from gaining popularity. This paper proposes a highly scalable approach for detailed character image classification by introducing the model architecture, data preprocessing steps, and testing design instructions. We also perform experiments to compare the performance of our method with that of existing ones to show the improvements achieved.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 1 supplement","pages":"S278 - S287"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Driven Approach for Handwritten Chinese Character Classification\",\"authors\":\"B. Kriuk,&nbsp;F. Kriuk\",\"doi\":\"10.1134/S1064562424602245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Handwritten character recognition (HCR) is a challenging problem for machine learning researchers. Unlike printed text data, handwritten character datasets have more variation due to human-introduced bias. With numerous unique character classes present, some data, such as Logographic Scripts or Sino-Korean character sequences, bring new complications to the HCR problem. The classification task on such datasets requires the model to learn high-complexity details of the images that share similar features. With recent advances in computational resource availability and further computer vision theory development, some research teams have effectively addressed the arising challenges. Although known for achieving high accuracy while keeping the number of parameters small, many common approaches are still not generalizable and use dataset-specific solutions to achieve better results. Due to complex structure, existing methods frequently prevent the solutions from gaining popularity. This paper proposes a highly scalable approach for detailed character image classification by introducing the model architecture, data preprocessing steps, and testing design instructions. We also perform experiments to compare the performance of our method with that of existing ones to show the improvements achieved.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"110 1 supplement\",\"pages\":\"S278 - S287\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424602245\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424602245","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

手写字符识别(HCR)是机器学习研究人员面临的一个具有挑战性的问题。与印刷文本数据不同,由于人为引入的偏差,手写字符数据集有更多的变化。由于存在许多独特的字符类,一些数据,如Logographic Scripts或Sino-Korean字符序列,给HCR问题带来了新的复杂性。在这些数据集上的分类任务需要模型学习具有相似特征的图像的高复杂性细节。随着计算资源的可用性和计算机视觉理论的进一步发展,一些研究团队已经有效地解决了出现的挑战。虽然以在保持参数数量较少的情况下实现高精度而闻名,但许多常见方法仍然无法推广,并且使用特定于数据集的解决方案来获得更好的结果。现有方法由于结构复杂,往往阻碍了解决方案的普及。本文通过介绍模型架构、数据预处理步骤和测试设计说明,提出了一种高度可扩展的精细字符图像分类方法。我们还进行了实验,将我们的方法与现有方法的性能进行比较,以显示所取得的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Learning-Driven Approach for Handwritten Chinese Character Classification

Deep Learning-Driven Approach for Handwritten Chinese Character Classification

Handwritten character recognition (HCR) is a challenging problem for machine learning researchers. Unlike printed text data, handwritten character datasets have more variation due to human-introduced bias. With numerous unique character classes present, some data, such as Logographic Scripts or Sino-Korean character sequences, bring new complications to the HCR problem. The classification task on such datasets requires the model to learn high-complexity details of the images that share similar features. With recent advances in computational resource availability and further computer vision theory development, some research teams have effectively addressed the arising challenges. Although known for achieving high accuracy while keeping the number of parameters small, many common approaches are still not generalizable and use dataset-specific solutions to achieve better results. Due to complex structure, existing methods frequently prevent the solutions from gaining popularity. This paper proposes a highly scalable approach for detailed character image classification by introducing the model architecture, data preprocessing steps, and testing design instructions. We also perform experiments to compare the performance of our method with that of existing ones to show the improvements achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信