{"title":"银诱导的相内电子相互作用和氯离子排斥促进海水电解中的高效电催化氧进化","authors":"Huaiyuan Chen, Ruiqi Cheng*, Min Jiang, Xichen Shao, Xinlong Zhang, Yilin Han, Jiarui Fu, Yizhou Dong, Anping Dong* and Chaopeng Fu*, ","doi":"10.1021/acsaem.4c0294210.1021/acsaem.4c02942","DOIUrl":null,"url":null,"abstract":"<p >Seawater electrolysis for hydrogen production has emerged as a focal point in hydrogen energy utilization technology due to its low carbon emissions and the abundance of seawater resources. However, the high chlorine content of seawater as an electrolyte negatively impacts the stability and performance of anodic catalysts. Herein, we design a silver integration strategy to repel surface Cl<sup>–</sup> adsorption and modulate the electronic structure of the metal active center of NiCo bimetallic metal organic framework (MOF). The obtained Ag@NiCo MOF achieves an overpotential of 269 mV at a current density of 10 mA cm<sup>–2</sup> toward oxygen evolution reaction (OER) and maintains this performance over 500 h in simulated alkaline seawater without obvious degradation. The superior performance is because the in-phase electronic interaction induced by deposited Ag optimizes the electron state of MOF metal active sites. Moreover, deposited Ag in situ transforms into AgCl during OER further triggering the repulsion of Cl<sup>–</sup> on the electrode surface. This not only facilitates the reaction kinetic but also helps repel chloride ions and enhances electrode stability and the selectivity for OER. The superior electrochemical performance and stability of Ag@NiCo MOF render them highly competitive among various catalysts for alkaline seawater spitting.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 6","pages":"3416–3424 3416–3424"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silver Induced In-Phase Electronic Interaction and Chloride Ion Repelling for Efficient Electrocatalytic Oxygen Evolution in Seawater Electrolysis\",\"authors\":\"Huaiyuan Chen, Ruiqi Cheng*, Min Jiang, Xichen Shao, Xinlong Zhang, Yilin Han, Jiarui Fu, Yizhou Dong, Anping Dong* and Chaopeng Fu*, \",\"doi\":\"10.1021/acsaem.4c0294210.1021/acsaem.4c02942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Seawater electrolysis for hydrogen production has emerged as a focal point in hydrogen energy utilization technology due to its low carbon emissions and the abundance of seawater resources. However, the high chlorine content of seawater as an electrolyte negatively impacts the stability and performance of anodic catalysts. Herein, we design a silver integration strategy to repel surface Cl<sup>–</sup> adsorption and modulate the electronic structure of the metal active center of NiCo bimetallic metal organic framework (MOF). The obtained Ag@NiCo MOF achieves an overpotential of 269 mV at a current density of 10 mA cm<sup>–2</sup> toward oxygen evolution reaction (OER) and maintains this performance over 500 h in simulated alkaline seawater without obvious degradation. The superior performance is because the in-phase electronic interaction induced by deposited Ag optimizes the electron state of MOF metal active sites. Moreover, deposited Ag in situ transforms into AgCl during OER further triggering the repulsion of Cl<sup>–</sup> on the electrode surface. This not only facilitates the reaction kinetic but also helps repel chloride ions and enhances electrode stability and the selectivity for OER. The superior electrochemical performance and stability of Ag@NiCo MOF render them highly competitive among various catalysts for alkaline seawater spitting.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 6\",\"pages\":\"3416–3424 3416–3424\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c02942\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02942","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Silver Induced In-Phase Electronic Interaction and Chloride Ion Repelling for Efficient Electrocatalytic Oxygen Evolution in Seawater Electrolysis
Seawater electrolysis for hydrogen production has emerged as a focal point in hydrogen energy utilization technology due to its low carbon emissions and the abundance of seawater resources. However, the high chlorine content of seawater as an electrolyte negatively impacts the stability and performance of anodic catalysts. Herein, we design a silver integration strategy to repel surface Cl– adsorption and modulate the electronic structure of the metal active center of NiCo bimetallic metal organic framework (MOF). The obtained Ag@NiCo MOF achieves an overpotential of 269 mV at a current density of 10 mA cm–2 toward oxygen evolution reaction (OER) and maintains this performance over 500 h in simulated alkaline seawater without obvious degradation. The superior performance is because the in-phase electronic interaction induced by deposited Ag optimizes the electron state of MOF metal active sites. Moreover, deposited Ag in situ transforms into AgCl during OER further triggering the repulsion of Cl– on the electrode surface. This not only facilitates the reaction kinetic but also helps repel chloride ions and enhances electrode stability and the selectivity for OER. The superior electrochemical performance and stability of Ag@NiCo MOF render them highly competitive among various catalysts for alkaline seawater spitting.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.