利用空间运动回声稀疏度的5D图像重建加速自由呼吸定量肝脏MRI

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
MungSoo Kang , Ricardo Otazo , Gerald Behr , Youngwook Kee
{"title":"利用空间运动回声稀疏度的5D图像重建加速自由呼吸定量肝脏MRI","authors":"MungSoo Kang ,&nbsp;Ricardo Otazo ,&nbsp;Gerald Behr ,&nbsp;Youngwook Kee","doi":"10.1016/j.media.2025.103532","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in 3D non-Cartesian multi-echo gradient-echo (mGRE) imaging and compressed sensing (CS)-based 4D (3D image space + 1D respiratory motion) motion-resolved image reconstruction, which applies temporal total variation to the respiratory motion dimension, have enabled free-breathing liver tissue MR parameter mapping. This technology now allows for robust reconstruction of high-resolution proton density fat fraction (PDFF), R<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, and quantitative susceptibility mapping (QSM), previously unattainable with conventional Cartesian mGRE imaging. However, long scan times remain a persistent challenge in free-breathing 3D non-Cartesian mGRE imaging. Recognizing that the underlying dimension of the imaging data is essentially 5D (4D + 1D echo signal evolution), we propose a CS-based 5D motion-resolved mGRE image reconstruction method to further accelerate the acquisition. Our approach integrates discrete wavelet transforms along the echo and spatial dimensions into a CS-based reconstruction model and devises a solution algorithm capable of handling such a 5D complex-valued array. Through phantom and in vivo human subject studies, we evaluated the effectiveness of leveraging unexplored correlations by comparing the proposed 5D reconstruction with the 4D reconstruction (i.e., motion-resolved reconstruction with temporal total variation) across a wide range of acceleration factors. The 5D reconstruction produced more reliable and consistent measurements of PDFF, R<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, and QSM compared to the 4D reconstruction. In conclusion, the proposed 5D motion-resolved image reconstruction demonstrates the feasibility of achieving accelerated, reliable, and free-breathing liver mGRE imaging for the measurement of PDFF, R<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, and QSM.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"102 ","pages":"Article 103532"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5D image reconstruction exploiting space-motion-echo sparsity for accelerated free-breathing quantitative liver MRI\",\"authors\":\"MungSoo Kang ,&nbsp;Ricardo Otazo ,&nbsp;Gerald Behr ,&nbsp;Youngwook Kee\",\"doi\":\"10.1016/j.media.2025.103532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advances in 3D non-Cartesian multi-echo gradient-echo (mGRE) imaging and compressed sensing (CS)-based 4D (3D image space + 1D respiratory motion) motion-resolved image reconstruction, which applies temporal total variation to the respiratory motion dimension, have enabled free-breathing liver tissue MR parameter mapping. This technology now allows for robust reconstruction of high-resolution proton density fat fraction (PDFF), R<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, and quantitative susceptibility mapping (QSM), previously unattainable with conventional Cartesian mGRE imaging. However, long scan times remain a persistent challenge in free-breathing 3D non-Cartesian mGRE imaging. Recognizing that the underlying dimension of the imaging data is essentially 5D (4D + 1D echo signal evolution), we propose a CS-based 5D motion-resolved mGRE image reconstruction method to further accelerate the acquisition. Our approach integrates discrete wavelet transforms along the echo and spatial dimensions into a CS-based reconstruction model and devises a solution algorithm capable of handling such a 5D complex-valued array. Through phantom and in vivo human subject studies, we evaluated the effectiveness of leveraging unexplored correlations by comparing the proposed 5D reconstruction with the 4D reconstruction (i.e., motion-resolved reconstruction with temporal total variation) across a wide range of acceleration factors. The 5D reconstruction produced more reliable and consistent measurements of PDFF, R<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, and QSM compared to the 4D reconstruction. In conclusion, the proposed 5D motion-resolved image reconstruction demonstrates the feasibility of achieving accelerated, reliable, and free-breathing liver mGRE imaging for the measurement of PDFF, R<span><math><msubsup><mrow></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></math></span>, and QSM.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"102 \",\"pages\":\"Article 103532\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525000702\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000702","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

三维非笛卡尔多回波梯度回波(mGRE)成像和基于压缩感知(CS)的4D (3D图像空间+ 1D呼吸运动)运动分辨图像重建的最新进展,将时间总变应用于呼吸运动维度,使自由呼吸的肝组织MR参数映射成为可能。该技术现在允许高分辨率质子密度脂肪分数(PDFF), R2 *和定量敏感性制图(QSM)的强大重建,以前无法实现传统的笛卡尔mGRE成像。然而,在自由呼吸三维非笛卡儿mGRE成像中,长扫描时间仍然是一个持续的挑战。认识到成像数据的底层维度本质上是5D (4D + 1D回波信号演化),我们提出了一种基于cs的5D运动分辨mGRE图像重建方法,以进一步加快采集速度。我们的方法将沿回波和空间维度的离散小波变换集成到基于cs的重建模型中,并设计了能够处理这种5D复值数组的解决算法。通过幻影和体内人体受试者研究,我们通过比较所提出的5D重建与4D重建(即具有时间总变化的运动分辨重建),评估了利用未探索相关性的有效性。与4D重建相比,5D重建产生了更可靠和一致的PDFF, R2 *和QSM测量。总之,所提出的5D运动分辨图像重建证明了实现加速、可靠和自由呼吸肝脏mGRE成像的可行性,可用于测量PDFF、R2 *和QSM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
5D image reconstruction exploiting space-motion-echo sparsity for accelerated free-breathing quantitative liver MRI
Recent advances in 3D non-Cartesian multi-echo gradient-echo (mGRE) imaging and compressed sensing (CS)-based 4D (3D image space + 1D respiratory motion) motion-resolved image reconstruction, which applies temporal total variation to the respiratory motion dimension, have enabled free-breathing liver tissue MR parameter mapping. This technology now allows for robust reconstruction of high-resolution proton density fat fraction (PDFF), R2, and quantitative susceptibility mapping (QSM), previously unattainable with conventional Cartesian mGRE imaging. However, long scan times remain a persistent challenge in free-breathing 3D non-Cartesian mGRE imaging. Recognizing that the underlying dimension of the imaging data is essentially 5D (4D + 1D echo signal evolution), we propose a CS-based 5D motion-resolved mGRE image reconstruction method to further accelerate the acquisition. Our approach integrates discrete wavelet transforms along the echo and spatial dimensions into a CS-based reconstruction model and devises a solution algorithm capable of handling such a 5D complex-valued array. Through phantom and in vivo human subject studies, we evaluated the effectiveness of leveraging unexplored correlations by comparing the proposed 5D reconstruction with the 4D reconstruction (i.e., motion-resolved reconstruction with temporal total variation) across a wide range of acceleration factors. The 5D reconstruction produced more reliable and consistent measurements of PDFF, R2, and QSM compared to the 4D reconstruction. In conclusion, the proposed 5D motion-resolved image reconstruction demonstrates the feasibility of achieving accelerated, reliable, and free-breathing liver mGRE imaging for the measurement of PDFF, R2, and QSM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信