通过光谱红移测量我们的奇特速度

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Mohamed Yousry Elkhashab, Cristiano Porciani and Daniele Bertacca
{"title":"通过光谱红移测量我们的奇特速度","authors":"Mohamed Yousry Elkhashab, Cristiano Porciani and Daniele Bertacca","doi":"10.1088/1475-7516/2025/03/044","DOIUrl":null,"url":null,"abstract":"Our peculiar velocity imprints a dipole on galaxy density maps derived from redshift surveys. The dipole gives rise to an oscillatory signal in the multipole moments of the observed power spectrum which we indicate as the finger-of-the-observer (FOTO) effect. Using a suite of large mock catalogues mimicking ongoing and future Hα- and Hi-selected surveys, we demonstrate that the oscillatory features can be measured with a signal-to-noise ratio of up to 7 (depending on the sky area coverage and provided that observational systematics are kept under control on large scales). We also show that the FOTO effect cannot be erased by correcting the individual galaxy redshifts. On the contrary, by leveraging the power of the redshift corrections, we propose a novel method to determine both the magnitude and the direction of our peculiar velocity. After applying this technique to our mock catalogues, we conclude that it can be used to either test the kinematic interpretation of the temperature dipole in the cosmic microwave background or to extract cosmological information such as the matter density parameter and the equation of state of dark energy.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"96 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring our peculiar velocity from spectroscopic redshift surveys\",\"authors\":\"Mohamed Yousry Elkhashab, Cristiano Porciani and Daniele Bertacca\",\"doi\":\"10.1088/1475-7516/2025/03/044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our peculiar velocity imprints a dipole on galaxy density maps derived from redshift surveys. The dipole gives rise to an oscillatory signal in the multipole moments of the observed power spectrum which we indicate as the finger-of-the-observer (FOTO) effect. Using a suite of large mock catalogues mimicking ongoing and future Hα- and Hi-selected surveys, we demonstrate that the oscillatory features can be measured with a signal-to-noise ratio of up to 7 (depending on the sky area coverage and provided that observational systematics are kept under control on large scales). We also show that the FOTO effect cannot be erased by correcting the individual galaxy redshifts. On the contrary, by leveraging the power of the redshift corrections, we propose a novel method to determine both the magnitude and the direction of our peculiar velocity. After applying this technique to our mock catalogues, we conclude that it can be used to either test the kinematic interpretation of the temperature dipole in the cosmic microwave background or to extract cosmological information such as the matter density parameter and the equation of state of dark energy.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/03/044\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/044","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring our peculiar velocity from spectroscopic redshift surveys
Our peculiar velocity imprints a dipole on galaxy density maps derived from redshift surveys. The dipole gives rise to an oscillatory signal in the multipole moments of the observed power spectrum which we indicate as the finger-of-the-observer (FOTO) effect. Using a suite of large mock catalogues mimicking ongoing and future Hα- and Hi-selected surveys, we demonstrate that the oscillatory features can be measured with a signal-to-noise ratio of up to 7 (depending on the sky area coverage and provided that observational systematics are kept under control on large scales). We also show that the FOTO effect cannot be erased by correcting the individual galaxy redshifts. On the contrary, by leveraging the power of the redshift corrections, we propose a novel method to determine both the magnitude and the direction of our peculiar velocity. After applying this technique to our mock catalogues, we conclude that it can be used to either test the kinematic interpretation of the temperature dipole in the cosmic microwave background or to extract cosmological information such as the matter density parameter and the equation of state of dark energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信