Mohamed Yousry Elkhashab, Cristiano Porciani and Daniele Bertacca
{"title":"通过光谱红移测量我们的奇特速度","authors":"Mohamed Yousry Elkhashab, Cristiano Porciani and Daniele Bertacca","doi":"10.1088/1475-7516/2025/03/044","DOIUrl":null,"url":null,"abstract":"Our peculiar velocity imprints a dipole on galaxy density maps derived from redshift surveys. The dipole gives rise to an oscillatory signal in the multipole moments of the observed power spectrum which we indicate as the finger-of-the-observer (FOTO) effect. Using a suite of large mock catalogues mimicking ongoing and future Hα- and Hi-selected surveys, we demonstrate that the oscillatory features can be measured with a signal-to-noise ratio of up to 7 (depending on the sky area coverage and provided that observational systematics are kept under control on large scales). We also show that the FOTO effect cannot be erased by correcting the individual galaxy redshifts. On the contrary, by leveraging the power of the redshift corrections, we propose a novel method to determine both the magnitude and the direction of our peculiar velocity. After applying this technique to our mock catalogues, we conclude that it can be used to either test the kinematic interpretation of the temperature dipole in the cosmic microwave background or to extract cosmological information such as the matter density parameter and the equation of state of dark energy.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"96 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring our peculiar velocity from spectroscopic redshift surveys\",\"authors\":\"Mohamed Yousry Elkhashab, Cristiano Porciani and Daniele Bertacca\",\"doi\":\"10.1088/1475-7516/2025/03/044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our peculiar velocity imprints a dipole on galaxy density maps derived from redshift surveys. The dipole gives rise to an oscillatory signal in the multipole moments of the observed power spectrum which we indicate as the finger-of-the-observer (FOTO) effect. Using a suite of large mock catalogues mimicking ongoing and future Hα- and Hi-selected surveys, we demonstrate that the oscillatory features can be measured with a signal-to-noise ratio of up to 7 (depending on the sky area coverage and provided that observational systematics are kept under control on large scales). We also show that the FOTO effect cannot be erased by correcting the individual galaxy redshifts. On the contrary, by leveraging the power of the redshift corrections, we propose a novel method to determine both the magnitude and the direction of our peculiar velocity. After applying this technique to our mock catalogues, we conclude that it can be used to either test the kinematic interpretation of the temperature dipole in the cosmic microwave background or to extract cosmological information such as the matter density parameter and the equation of state of dark energy.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/03/044\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/044","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Measuring our peculiar velocity from spectroscopic redshift surveys
Our peculiar velocity imprints a dipole on galaxy density maps derived from redshift surveys. The dipole gives rise to an oscillatory signal in the multipole moments of the observed power spectrum which we indicate as the finger-of-the-observer (FOTO) effect. Using a suite of large mock catalogues mimicking ongoing and future Hα- and Hi-selected surveys, we demonstrate that the oscillatory features can be measured with a signal-to-noise ratio of up to 7 (depending on the sky area coverage and provided that observational systematics are kept under control on large scales). We also show that the FOTO effect cannot be erased by correcting the individual galaxy redshifts. On the contrary, by leveraging the power of the redshift corrections, we propose a novel method to determine both the magnitude and the direction of our peculiar velocity. After applying this technique to our mock catalogues, we conclude that it can be used to either test the kinematic interpretation of the temperature dipole in the cosmic microwave background or to extract cosmological information such as the matter density parameter and the equation of state of dark energy.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.