温度影响环境获得性共生的结果。

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Patrick T Stillson, Kaisy Martinez, Johnathan Adamson, Arshya Tehrani, Alison Ravenscraft
{"title":"温度影响环境获得性共生的结果。","authors":"Patrick T Stillson, Kaisy Martinez, Johnathan Adamson, Arshya Tehrani, Alison Ravenscraft","doi":"10.1093/ismejo/wraf056","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial symbioses are essential for many animals, but their outcomes are often context dependent. For example, rising temperatures can disrupt symbioses by eliminating thermally sensitive symbionts. The temperature tolerance of a symbiont may therefore limit the temperature range of its host, but switching to a more thermally tolerant partner could expand this range. Eastern leaf footed bugs (Leptoglossus phyllopus) depend on symbiotic Caballeronia bacteria which they must acquire from the environment early in development. Could this result in intergenerational partner switching that improves host outcomes under changing conditions? As a first step towards answering this question, we tested the hypothesis that host outcomes in this symbiosis vary among symbiont strains in a temperature-dependent manner. Nymphs were provided with one of six Caballeronia strains with varying thermal optima and reared at temperatures from 24 - 40°C. We observed temperature- and strain-dependent tradeoffs in host outcomes, with different strains conferring improved host weight, development time, and survival at cooler versus warmer temperatures. Differences in host outcomes were most pronounced at high temperatures, with some strains imposing severe costs. However, Caballeronia's in vitro thermal optima did not predict in vivo outcomes. Regardless, strain - and temperature - dependent outcomes suggest that environmental symbiont acquisition could mitigate the effects of thermal stress on host populations. It is often assumed that vertical transmission of a beneficial symbiont from parent to offspring is the optimal strategy, but our results suggest that environmental acquisition could offer unique benefits under changing conditions.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature influences outcomes of an environmentally acquired symbiosis.\",\"authors\":\"Patrick T Stillson, Kaisy Martinez, Johnathan Adamson, Arshya Tehrani, Alison Ravenscraft\",\"doi\":\"10.1093/ismejo/wraf056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial symbioses are essential for many animals, but their outcomes are often context dependent. For example, rising temperatures can disrupt symbioses by eliminating thermally sensitive symbionts. The temperature tolerance of a symbiont may therefore limit the temperature range of its host, but switching to a more thermally tolerant partner could expand this range. Eastern leaf footed bugs (Leptoglossus phyllopus) depend on symbiotic Caballeronia bacteria which they must acquire from the environment early in development. Could this result in intergenerational partner switching that improves host outcomes under changing conditions? As a first step towards answering this question, we tested the hypothesis that host outcomes in this symbiosis vary among symbiont strains in a temperature-dependent manner. Nymphs were provided with one of six Caballeronia strains with varying thermal optima and reared at temperatures from 24 - 40°C. We observed temperature- and strain-dependent tradeoffs in host outcomes, with different strains conferring improved host weight, development time, and survival at cooler versus warmer temperatures. Differences in host outcomes were most pronounced at high temperatures, with some strains imposing severe costs. However, Caballeronia's in vitro thermal optima did not predict in vivo outcomes. Regardless, strain - and temperature - dependent outcomes suggest that environmental symbiont acquisition could mitigate the effects of thermal stress on host populations. It is often assumed that vertical transmission of a beneficial symbiont from parent to offspring is the optimal strategy, but our results suggest that environmental acquisition could offer unique benefits under changing conditions.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf056\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf056","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物共生对许多动物来说是必不可少的,但它们的结果往往取决于环境。例如,温度升高会通过消除对热敏感的共生体来破坏共生。因此,共生体的耐温性可能会限制其宿主的温度范围,但切换到更耐热的伴侣可以扩大这个范围。东方叶足虫(Leptoglossus phyllopus)依赖于共生的Caballeronia细菌,这些细菌必须在发育早期从环境中获得。这是否会导致代际伴侣的转换,从而在不断变化的条件下改善宿主的预后?作为回答这个问题的第一步,我们测试了这种共生中的宿主结果在共生菌株之间以温度依赖的方式变化的假设。在24 - 40°C的温度范围内饲养若虫,并从6种不同温度条件的Caballeronia菌株中选择一种。我们观察到宿主结果的温度和菌株依赖的权衡,不同的菌株在较冷的温度和较暖的温度下可以改善宿主的体重、发育时间和存活率。宿主结果的差异在高温下最为明显,有些菌株造成了严重的损失。然而,Caballeronia的体外热优化并不能预测体内结果。无论如何,菌株和温度依赖的结果表明,环境共生体的获取可以减轻热应激对宿主种群的影响。人们通常认为有益共生体从亲代向后代的垂直传播是最佳策略,但我们的研究结果表明,环境获取可以在不断变化的条件下提供独特的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature influences outcomes of an environmentally acquired symbiosis.

Microbial symbioses are essential for many animals, but their outcomes are often context dependent. For example, rising temperatures can disrupt symbioses by eliminating thermally sensitive symbionts. The temperature tolerance of a symbiont may therefore limit the temperature range of its host, but switching to a more thermally tolerant partner could expand this range. Eastern leaf footed bugs (Leptoglossus phyllopus) depend on symbiotic Caballeronia bacteria which they must acquire from the environment early in development. Could this result in intergenerational partner switching that improves host outcomes under changing conditions? As a first step towards answering this question, we tested the hypothesis that host outcomes in this symbiosis vary among symbiont strains in a temperature-dependent manner. Nymphs were provided with one of six Caballeronia strains with varying thermal optima and reared at temperatures from 24 - 40°C. We observed temperature- and strain-dependent tradeoffs in host outcomes, with different strains conferring improved host weight, development time, and survival at cooler versus warmer temperatures. Differences in host outcomes were most pronounced at high temperatures, with some strains imposing severe costs. However, Caballeronia's in vitro thermal optima did not predict in vivo outcomes. Regardless, strain - and temperature - dependent outcomes suggest that environmental symbiont acquisition could mitigate the effects of thermal stress on host populations. It is often assumed that vertical transmission of a beneficial symbiont from parent to offspring is the optimal strategy, but our results suggest that environmental acquisition could offer unique benefits under changing conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信