细胞外粘附蛋白减少基质孔隙度,增强假体关节感染期间金黄色葡萄球菌生物膜的存活。

IF 2.9 3区 医学 Q3 IMMUNOLOGY
Infection and Immunity Pub Date : 2025-04-08 Epub Date: 2025-03-21 DOI:10.1128/iai.00086-25
Mohini Bhattacharya, Tyler D Scherr, Jessica Lister, Tammy Kielian, Alexander R Horswill
{"title":"细胞外粘附蛋白减少基质孔隙度,增强假体关节感染期间金黄色葡萄球菌生物膜的存活。","authors":"Mohini Bhattacharya, Tyler D Scherr, Jessica Lister, Tammy Kielian, Alexander R Horswill","doi":"10.1128/iai.00086-25","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms are a cause of chronic, non-healing infections. <i>Staphylococcus aureus</i> is a proficient biofilm-forming pathogen commonly isolated from prosthetic joint infections that develop following primary arthroplasty. Extracellular adherence protein (Eap), previously characterized in planktonic or non-biofilm populations as being an adhesin and immune evasion factor, was recently identified in the exoproteome of <i>S. aureus</i> biofilms. This work demonstrates that Eap and its two functionally orphaned homologs EapH1 and EapH2 contribute to biofilm structure and prevent macrophage invasion and phagocytosis in these communities. Biofilms unable to express Eap proteins demonstrated increased porosity and reduced biomass. We describe the role of Eap proteins <i>in vivo</i> using a mouse model of <i>S. aureus</i> prosthetic joint infection. The Results suggest that the protection conferred to biofilms by Eap proteins is a function of biofilm structural stability that interferes with the leukocyte response to biofilm-associated bacteria.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0008625"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977312/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extracellular adherence proteins reduce matrix porosity and enhance <i>Staphylococcus aureus</i> biofilm survival during prosthetic joint infection.\",\"authors\":\"Mohini Bhattacharya, Tyler D Scherr, Jessica Lister, Tammy Kielian, Alexander R Horswill\",\"doi\":\"10.1128/iai.00086-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilms are a cause of chronic, non-healing infections. <i>Staphylococcus aureus</i> is a proficient biofilm-forming pathogen commonly isolated from prosthetic joint infections that develop following primary arthroplasty. Extracellular adherence protein (Eap), previously characterized in planktonic or non-biofilm populations as being an adhesin and immune evasion factor, was recently identified in the exoproteome of <i>S. aureus</i> biofilms. This work demonstrates that Eap and its two functionally orphaned homologs EapH1 and EapH2 contribute to biofilm structure and prevent macrophage invasion and phagocytosis in these communities. Biofilms unable to express Eap proteins demonstrated increased porosity and reduced biomass. We describe the role of Eap proteins <i>in vivo</i> using a mouse model of <i>S. aureus</i> prosthetic joint infection. The Results suggest that the protection conferred to biofilms by Eap proteins is a function of biofilm structural stability that interferes with the leukocyte response to biofilm-associated bacteria.</p>\",\"PeriodicalId\":13541,\"journal\":{\"name\":\"Infection and Immunity\",\"volume\":\" \",\"pages\":\"e0008625\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977312/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/iai.00086-25\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00086-25","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物膜是慢性、不愈合感染的一个原因。金黄色葡萄球菌是一种熟练的生物膜形成病原体,通常从原发性关节置换术后发生的假体关节感染中分离出来。细胞外粘附蛋白(Eap),以前在浮游生物或非生物膜群体中被认为是一种粘附素和免疫逃避因子,最近在金黄色葡萄球菌生物膜的外蛋白质组中被发现。这项工作表明,Eap及其两个功能孤儿同源物EapH1和EapH2在这些群落中参与生物膜结构并阻止巨噬细胞入侵和吞噬。无法表达Eap蛋白的生物膜孔隙度增加,生物量减少。我们用金黄色葡萄球菌假体关节感染的小鼠模型描述了Eap蛋白在体内的作用。结果表明,Eap蛋白赋予生物膜的保护作用是生物膜结构稳定性的一种功能,它干扰了白细胞对生物膜相关细菌的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracellular adherence proteins reduce matrix porosity and enhance Staphylococcus aureus biofilm survival during prosthetic joint infection.

Biofilms are a cause of chronic, non-healing infections. Staphylococcus aureus is a proficient biofilm-forming pathogen commonly isolated from prosthetic joint infections that develop following primary arthroplasty. Extracellular adherence protein (Eap), previously characterized in planktonic or non-biofilm populations as being an adhesin and immune evasion factor, was recently identified in the exoproteome of S. aureus biofilms. This work demonstrates that Eap and its two functionally orphaned homologs EapH1 and EapH2 contribute to biofilm structure and prevent macrophage invasion and phagocytosis in these communities. Biofilms unable to express Eap proteins demonstrated increased porosity and reduced biomass. We describe the role of Eap proteins in vivo using a mouse model of S. aureus prosthetic joint infection. The Results suggest that the protection conferred to biofilms by Eap proteins is a function of biofilm structural stability that interferes with the leukocyte response to biofilm-associated bacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infection and Immunity
Infection and Immunity 医学-传染病学
CiteScore
6.00
自引率
6.50%
发文量
268
审稿时长
3 months
期刊介绍: Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信