使用从确定性和随机微分方程中导出的互相关随机矩阵识别模式。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-03-01 DOI:10.1063/5.0233321
Roberto da Silva, Sandra D Prado
{"title":"使用从确定性和随机微分方程中导出的互相关随机矩阵识别模式。","authors":"Roberto da Silva, Sandra D Prado","doi":"10.1063/5.0233321","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-correlation random matrices have emerged as a promising indicator of phase transitions in spin systems. The core concept is that the evolution of magnetization encapsulates thermodynamic information [R. da Silva, Int. J. Mod. Phys. C 34, 2350061 (2023)], which is directly reflected in the eigenvalues of these matrices. When these evolutions are analyzed in the mean-field regime, an important question arises: Can the Langevin equation, when translated into maps, perform the same function? Some studies suggest that this method may also capture the chaotic behavior of certain systems. In this work, we propose that the spectral properties of random matrices constructed from maps derived from deterministic or stochastic differential equations can indicate the critical or chaotic behavior of such systems. For chaotic systems, we need only the evolution of iterated Hamiltonian equations, and for spin systems, the Langevin maps obtained from mean-field equations suffice, thus avoiding the need for Monte Carlo (MC) simulations or other techniques.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying patterns using cross-correlation random matrices derived from deterministic and stochastic differential equations.\",\"authors\":\"Roberto da Silva, Sandra D Prado\",\"doi\":\"10.1063/5.0233321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cross-correlation random matrices have emerged as a promising indicator of phase transitions in spin systems. The core concept is that the evolution of magnetization encapsulates thermodynamic information [R. da Silva, Int. J. Mod. Phys. C 34, 2350061 (2023)], which is directly reflected in the eigenvalues of these matrices. When these evolutions are analyzed in the mean-field regime, an important question arises: Can the Langevin equation, when translated into maps, perform the same function? Some studies suggest that this method may also capture the chaotic behavior of certain systems. In this work, we propose that the spectral properties of random matrices constructed from maps derived from deterministic or stochastic differential equations can indicate the critical or chaotic behavior of such systems. For chaotic systems, we need only the evolution of iterated Hamiltonian equations, and for spin systems, the Langevin maps obtained from mean-field equations suffice, thus avoiding the need for Monte Carlo (MC) simulations or other techniques.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0233321\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0233321","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

相互关联随机矩阵已成为自旋系统相变的一个有希望的指示。核心概念是磁化的演变封装了热力学信息[R]。达席尔瓦,Int。J.莫德:物理学。[C 34, 2350061(2023)],这直接反映在这些矩阵的特征值上。当这些演化在平均场体系中被分析时,一个重要的问题出现了:朗之万方程,当转换成地图时,能执行相同的功能吗?一些研究表明,这种方法也可以捕获某些系统的混沌行为。在这项工作中,我们提出由确定性或随机微分方程导出的映射构造的随机矩阵的谱性质可以指示此类系统的临界或混沌行为。对于混沌系统,我们只需要迭代哈密顿方程的演化,而对于自旋系统,由平均场方程得到的朗之万映射就足够了,从而避免了对蒙特卡罗(MC)模拟或其他技术的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying patterns using cross-correlation random matrices derived from deterministic and stochastic differential equations.

Cross-correlation random matrices have emerged as a promising indicator of phase transitions in spin systems. The core concept is that the evolution of magnetization encapsulates thermodynamic information [R. da Silva, Int. J. Mod. Phys. C 34, 2350061 (2023)], which is directly reflected in the eigenvalues of these matrices. When these evolutions are analyzed in the mean-field regime, an important question arises: Can the Langevin equation, when translated into maps, perform the same function? Some studies suggest that this method may also capture the chaotic behavior of certain systems. In this work, we propose that the spectral properties of random matrices constructed from maps derived from deterministic or stochastic differential equations can indicate the critical or chaotic behavior of such systems. For chaotic systems, we need only the evolution of iterated Hamiltonian equations, and for spin systems, the Langevin maps obtained from mean-field equations suffice, thus avoiding the need for Monte Carlo (MC) simulations or other techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信