一种基于ct的深度学习驱动的工具,用于癌症患者的肝脏肿瘤自动检测和描绘。

IF 11.7 1区 医学 Q1 CELL BIOLOGY
Cell Reports Medicine Pub Date : 2025-04-15 Epub Date: 2025-03-20 DOI:10.1016/j.xcrm.2025.102032
Maria Balaguer-Montero, Adrià Marcos Morales, Marta Ligero, Christina Zatse, David Leiva, Luz M Atlagich, Nikolaos Staikoglou, Cristina Viaplana, Camilo Monreal, Joaquin Mateo, Jorge Hernando, Alejandro García-Álvarez, Francesc Salvà, Jaume Capdevila, Elena Elez, Rodrigo Dienstmann, Elena Garralda, Raquel Perez-Lopez
{"title":"一种基于ct的深度学习驱动的工具,用于癌症患者的肝脏肿瘤自动检测和描绘。","authors":"Maria Balaguer-Montero, Adrià Marcos Morales, Marta Ligero, Christina Zatse, David Leiva, Luz M Atlagich, Nikolaos Staikoglou, Cristina Viaplana, Camilo Monreal, Joaquin Mateo, Jorge Hernando, Alejandro García-Álvarez, Francesc Salvà, Jaume Capdevila, Elena Elez, Rodrigo Dienstmann, Elena Garralda, Raquel Perez-Lopez","doi":"10.1016/j.xcrm.2025.102032","DOIUrl":null,"url":null,"abstract":"<p><p>Liver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Accurate identification and quantification are crucial for effective patient management, including precise diagnosis, prognosis, and therapy evaluation. We present SALSA (system for automatic liver tumor segmentation and detection), a fully automated tool for liver tumor detection and delineation. Developed on 1,598 computed tomography (CT) scans and 4,908 liver tumors, SALSA demonstrates superior accuracy in tumor identification and volume quantification, outperforming state-of-the-art models and inter-reader agreement among expert radiologists. SALSA achieves a patient-wise detection precision of 99.65%, and 81.72% at lesion level, in the external validation cohorts. Additionally, it exhibits good overlap, achieving a dice similarity coefficient (DSC) of 0.760, outperforming both state-of-the-art and the inter-radiologist assessment. SALSA's automatic quantification of tumor volume proves to have prognostic value across various solid tumors (p = 0.028). SALSA's robust capabilities position it as a potential medical device for automatic cancer detection, staging, and response evaluation.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102032"},"PeriodicalIF":11.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047525/pdf/","citationCount":"0","resultStr":"{\"title\":\"A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer.\",\"authors\":\"Maria Balaguer-Montero, Adrià Marcos Morales, Marta Ligero, Christina Zatse, David Leiva, Luz M Atlagich, Nikolaos Staikoglou, Cristina Viaplana, Camilo Monreal, Joaquin Mateo, Jorge Hernando, Alejandro García-Álvarez, Francesc Salvà, Jaume Capdevila, Elena Elez, Rodrigo Dienstmann, Elena Garralda, Raquel Perez-Lopez\",\"doi\":\"10.1016/j.xcrm.2025.102032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Accurate identification and quantification are crucial for effective patient management, including precise diagnosis, prognosis, and therapy evaluation. We present SALSA (system for automatic liver tumor segmentation and detection), a fully automated tool for liver tumor detection and delineation. Developed on 1,598 computed tomography (CT) scans and 4,908 liver tumors, SALSA demonstrates superior accuracy in tumor identification and volume quantification, outperforming state-of-the-art models and inter-reader agreement among expert radiologists. SALSA achieves a patient-wise detection precision of 99.65%, and 81.72% at lesion level, in the external validation cohorts. Additionally, it exhibits good overlap, achieving a dice similarity coefficient (DSC) of 0.760, outperforming both state-of-the-art and the inter-radiologist assessment. SALSA's automatic quantification of tumor volume proves to have prognostic value across various solid tumors (p = 0.028). SALSA's robust capabilities position it as a potential medical device for automatic cancer detection, staging, and response evaluation.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\" \",\"pages\":\"102032\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047525/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102032\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝脏肿瘤,无论是原发性还是转移性,都会显著影响癌症患者的预后。准确的识别和量化对有效的患者管理至关重要,包括准确的诊断、预后和治疗评估。我们提出了SALSA(自动肝脏肿瘤分割和检测系统),一个完全自动化的肝脏肿瘤检测和描绘工具。SALSA基于1598个计算机断层扫描(CT)和4908个肝脏肿瘤开发,在肿瘤识别和体积量化方面表现出卓越的准确性,优于最先进的模型和专家放射科医师之间的读者间协议。在外部验证队列中,SALSA的患者检测精度为99.65%,病变水平的检测精度为81.72%。此外,它表现出良好的重叠,达到0.760的骰子相似系数(DSC),优于最先进的和放射科医师之间的评估。SALSA对肿瘤体积的自动定量对各种实体瘤均有预后价值(p = 0.028)。SALSA的强大功能使其成为自动癌症检测、分期和反应评估的潜在医疗设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer.

Liver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Accurate identification and quantification are crucial for effective patient management, including precise diagnosis, prognosis, and therapy evaluation. We present SALSA (system for automatic liver tumor segmentation and detection), a fully automated tool for liver tumor detection and delineation. Developed on 1,598 computed tomography (CT) scans and 4,908 liver tumors, SALSA demonstrates superior accuracy in tumor identification and volume quantification, outperforming state-of-the-art models and inter-reader agreement among expert radiologists. SALSA achieves a patient-wise detection precision of 99.65%, and 81.72% at lesion level, in the external validation cohorts. Additionally, it exhibits good overlap, achieving a dice similarity coefficient (DSC) of 0.760, outperforming both state-of-the-art and the inter-radiologist assessment. SALSA's automatic quantification of tumor volume proves to have prognostic value across various solid tumors (p = 0.028). SALSA's robust capabilities position it as a potential medical device for automatic cancer detection, staging, and response evaluation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信