基于边缘优化的遥感图像多尺度语义分割

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Wubiao Huang;Fei Deng;Haibing Liu;Mingtao Ding;Qi Yao
{"title":"基于边缘优化的遥感图像多尺度语义分割","authors":"Wubiao Huang;Fei Deng;Haibing Liu;Mingtao Ding;Qi Yao","doi":"10.1109/TGRS.2025.3553524","DOIUrl":null,"url":null,"abstract":"Semantic segmentation of remote sensing images is crucial for disaster monitoring, urban planning, and land use. Due to scene complexity and multiscale features of targets, semantic segmentation of remote sensing images has become a challenging task. Deep convolutional neural networks capture remote contextual dependencies that are limited. Meanwhile, restoring the image size quickly leads to undersampling at object edges, resulting in poor boundary prediction. Therefore, this article proposes a multiscale semantic segmentation network of remote sensing images based on edge optimization, namely, multiscale edge optimization network (MSEONet). The decoder of the network consists of a multiscale context aggregation (MSCA) module, a coarse edge extraction (CEE) module, and an edge point feature optimization (EPFO) module. The MSCA module is used to capture multiscale contextual information and global dependencies between pixels. The CEE module is used for boundary extraction of multiclass coarse segmentation results. The EPFO module is used to optimize edge point features during the upsampling process. We conducted extensive experiments on the International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam 2-D dataset, the ISPRS Vaihingen 2-D dataset, and the FLAIR #1 dataset. The results show the effectiveness and superiority of our proposed MSEONet model compared to most of the state-of-the-art models. The CEE and EPFO modules can enhance the edge segmentation effect without increasing the computational and parametric quantities too much. The code is publicly available at <uri>https://github.com/HuangWBill/MSEONet</uri>.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-13"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Semantic Segmentation of Remote Sensing Images Based on Edge Optimization\",\"authors\":\"Wubiao Huang;Fei Deng;Haibing Liu;Mingtao Ding;Qi Yao\",\"doi\":\"10.1109/TGRS.2025.3553524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation of remote sensing images is crucial for disaster monitoring, urban planning, and land use. Due to scene complexity and multiscale features of targets, semantic segmentation of remote sensing images has become a challenging task. Deep convolutional neural networks capture remote contextual dependencies that are limited. Meanwhile, restoring the image size quickly leads to undersampling at object edges, resulting in poor boundary prediction. Therefore, this article proposes a multiscale semantic segmentation network of remote sensing images based on edge optimization, namely, multiscale edge optimization network (MSEONet). The decoder of the network consists of a multiscale context aggregation (MSCA) module, a coarse edge extraction (CEE) module, and an edge point feature optimization (EPFO) module. The MSCA module is used to capture multiscale contextual information and global dependencies between pixels. The CEE module is used for boundary extraction of multiclass coarse segmentation results. The EPFO module is used to optimize edge point features during the upsampling process. We conducted extensive experiments on the International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam 2-D dataset, the ISPRS Vaihingen 2-D dataset, and the FLAIR #1 dataset. The results show the effectiveness and superiority of our proposed MSEONet model compared to most of the state-of-the-art models. The CEE and EPFO modules can enhance the edge segmentation effect without increasing the computational and parametric quantities too much. The code is publicly available at <uri>https://github.com/HuangWBill/MSEONet</uri>.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"63 \",\"pages\":\"1-13\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937181/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937181/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

遥感图像的语义分割在灾害监测、城市规划和土地利用等方面具有重要意义。由于场景的复杂性和目标的多尺度特征,遥感图像的语义分割成为一项具有挑战性的任务。深度卷积神经网络捕获的远程上下文依赖关系是有限的。同时,快速恢复图像大小会导致物体边缘的欠采样,从而导致较差的边界预测。因此,本文提出了一种基于边缘优化的遥感图像多尺度语义分割网络,即多尺度边缘优化网络(MSEONet)。该网络的解码器由多尺度上下文聚合(MSCA)模块、粗边缘提取(CEE)模块和边缘点特征优化(EPFO)模块组成。MSCA模块用于捕获多尺度上下文信息和像素之间的全局依赖关系。CEE模块用于多类粗分割结果的边界提取。EPFO模块用于在上采样过程中优化边缘点特征。我们在国际摄影测量与遥感学会(ISPRS)波茨坦二维数据集、ISPRS瓦伊欣根二维数据集和FLAIR #1数据集上进行了广泛的实验。结果表明,与大多数最先进的模型相比,我们提出的MSEONet模型的有效性和优越性。CEE和EPFO模块可以在不增加过多计算量和参数量的情况下增强边缘分割效果。该代码可在https://github.com/HuangWBill/MSEONet上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Semantic Segmentation of Remote Sensing Images Based on Edge Optimization
Semantic segmentation of remote sensing images is crucial for disaster monitoring, urban planning, and land use. Due to scene complexity and multiscale features of targets, semantic segmentation of remote sensing images has become a challenging task. Deep convolutional neural networks capture remote contextual dependencies that are limited. Meanwhile, restoring the image size quickly leads to undersampling at object edges, resulting in poor boundary prediction. Therefore, this article proposes a multiscale semantic segmentation network of remote sensing images based on edge optimization, namely, multiscale edge optimization network (MSEONet). The decoder of the network consists of a multiscale context aggregation (MSCA) module, a coarse edge extraction (CEE) module, and an edge point feature optimization (EPFO) module. The MSCA module is used to capture multiscale contextual information and global dependencies between pixels. The CEE module is used for boundary extraction of multiclass coarse segmentation results. The EPFO module is used to optimize edge point features during the upsampling process. We conducted extensive experiments on the International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam 2-D dataset, the ISPRS Vaihingen 2-D dataset, and the FLAIR #1 dataset. The results show the effectiveness and superiority of our proposed MSEONet model compared to most of the state-of-the-art models. The CEE and EPFO modules can enhance the edge segmentation effect without increasing the computational and parametric quantities too much. The code is publicly available at https://github.com/HuangWBill/MSEONet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信