{"title":"具有多样性意识的人口模型。","authors":"","doi":"10.1038/s43588-025-00787-9","DOIUrl":null,"url":null,"abstract":"We propose a diversity-aware population modeling framework using Bayesian multilevel regression and post-stratification to quantify sociodemographic disparities in cognitive development. Our approach improved subgroup estimates, guiding targeted public health strategies and addressing biases in traditional models to support more equitable decision-making.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 3","pages":"194-195"},"PeriodicalIF":12.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversity-aware population modeling\",\"authors\":\"\",\"doi\":\"10.1038/s43588-025-00787-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a diversity-aware population modeling framework using Bayesian multilevel regression and post-stratification to quantify sociodemographic disparities in cognitive development. Our approach improved subgroup estimates, guiding targeted public health strategies and addressing biases in traditional models to support more equitable decision-making.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 3\",\"pages\":\"194-195\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-025-00787-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00787-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
We propose a diversity-aware population modeling framework using Bayesian multilevel regression and post-stratification to quantify sociodemographic disparities in cognitive development. Our approach improved subgroup estimates, guiding targeted public health strategies and addressing biases in traditional models to support more equitable decision-making.