从精神分裂症谱系和情绪障碍患者的药物性帕金森病病例报告中验证大型语言模型与人工信息提取:概念证明研究。

IF 3 Q2 PSYCHIATRY
Sebastian Volkmer, Alina Glück, Andreas Meyer-Lindenberg, Emanuel Schwarz, Dusan Hirjak
{"title":"从精神分裂症谱系和情绪障碍患者的药物性帕金森病病例报告中验证大型语言模型与人工信息提取:概念证明研究。","authors":"Sebastian Volkmer, Alina Glück, Andreas Meyer-Lindenberg, Emanuel Schwarz, Dusan Hirjak","doi":"10.1038/s41537-025-00601-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this proof of concept study, we demonstrated how Large Language Models (LLMs) can automate the conversion of unstructured case reports into clinical ratings. By leveraging instructions from a standardized clinical rating scale and evaluating the LLM's confidence in its outputs, we aimed to refine prompting strategies and enhance reproducibility. Using this strategy and case reports of drug-induced Parkinsonism, we showed that LLM-extracted data closely align with clinical rater manual extraction, achieving an accuracy of 90%.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"11 1","pages":"47"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926372/pdf/","citationCount":"0","resultStr":"{\"title\":\"Validating large language models against manual information extraction from case reports of drug-induced parkinsonism in patients with schizophrenia spectrum and mood disorders: a proof of concept study.\",\"authors\":\"Sebastian Volkmer, Alina Glück, Andreas Meyer-Lindenberg, Emanuel Schwarz, Dusan Hirjak\",\"doi\":\"10.1038/s41537-025-00601-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this proof of concept study, we demonstrated how Large Language Models (LLMs) can automate the conversion of unstructured case reports into clinical ratings. By leveraging instructions from a standardized clinical rating scale and evaluating the LLM's confidence in its outputs, we aimed to refine prompting strategies and enhance reproducibility. Using this strategy and case reports of drug-induced Parkinsonism, we showed that LLM-extracted data closely align with clinical rater manual extraction, achieving an accuracy of 90%.</p>\",\"PeriodicalId\":74758,\"journal\":{\"name\":\"Schizophrenia (Heidelberg, Germany)\",\"volume\":\"11 1\",\"pages\":\"47\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926372/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Schizophrenia (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41537-025-00601-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-025-00601-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

在这个概念验证研究中,我们演示了大型语言模型(llm)如何将非结构化病例报告自动转换为临床评级。通过利用来自标准化临床评定量表的指示并评估LLM对其输出的信心,我们旨在完善提示策略并提高可重复性。利用这一策略和药物性帕金森病的病例报告,我们发现llm提取的数据与临床人工提取的数据密切一致,准确率达到90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validating large language models against manual information extraction from case reports of drug-induced parkinsonism in patients with schizophrenia spectrum and mood disorders: a proof of concept study.

In this proof of concept study, we demonstrated how Large Language Models (LLMs) can automate the conversion of unstructured case reports into clinical ratings. By leveraging instructions from a standardized clinical rating scale and evaluating the LLM's confidence in its outputs, we aimed to refine prompting strategies and enhance reproducibility. Using this strategy and case reports of drug-induced Parkinsonism, we showed that LLM-extracted data closely align with clinical rater manual extraction, achieving an accuracy of 90%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信