响应连续外部刺激的群体放电率模型中分布式突触连接强度的动态变化。

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Masato Sugino;Mai Tanaka;Kenta Shimba;Kiyoshi Kotani;Yasuhiko Jimbo
{"title":"响应连续外部刺激的群体放电率模型中分布式突触连接强度的动态变化。","authors":"Masato Sugino;Mai Tanaka;Kenta Shimba;Kiyoshi Kotani;Yasuhiko Jimbo","doi":"10.1162/neco_a_01749","DOIUrl":null,"url":null,"abstract":"Neural network complexity allows for diverse neuronal population dynamics and realizes higherorder brain functions such as cognition and memory. Complexity is enhanced through chemical synapses with exponentially decaying conductance and greater variation in the neuronal connection strength due to synaptic plasticity. However, in the macroscopic neuronal population model, synaptic connections are often described by spike connections, and connection strengths within the population are assumed to be uniform. Thus, the effects of synaptic connections variation on network synchronization remain unclear. Based on recent advances in mean field theory for the quadratic integrate-and-fire neuronal network model, we introduce synaptic conductance and variation of connection strength into the excitatory and inhibitory neuronal population model and derive the macroscopic firing rate equations for faithful modeling. We then introduce a heuristic switching rule of the dynamic system with respect to the mean membrane potentials to avoid divergences in the computation caused by variations in the neuronal connection strength. We show that the switching rule agrees with the numerical computation of the microscopic level model. In the derived model, variations in synaptic conductance and connection strength strongly alter the stability of the solutions to the equations, which is related to the mechanism of synchronous firing. When we apply physiologically plausible values from layer 4 of the mammalian primary visual cortex to the derived model, we observe event-related desynchronization at the alpha and beta frequencies and event-related synchronization at the gamma frequency over a wide range of balanced external currents. Our results show that the introduction of complex synaptic connections and physiologically valid numerical values into the low-dimensional mean field equations reproduces dynamic changes such as eventrelated (de)synchronization, and provides a unique mathematical insight into the relationship between synaptic strength variation and oscillatory mechanism.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"37 5","pages":"987-1009"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Synaptic Connection Strength Changes Dynamics in a Population Firing Rate Model in Response to Continuous External Stimuli\",\"authors\":\"Masato Sugino;Mai Tanaka;Kenta Shimba;Kiyoshi Kotani;Yasuhiko Jimbo\",\"doi\":\"10.1162/neco_a_01749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network complexity allows for diverse neuronal population dynamics and realizes higherorder brain functions such as cognition and memory. Complexity is enhanced through chemical synapses with exponentially decaying conductance and greater variation in the neuronal connection strength due to synaptic plasticity. However, in the macroscopic neuronal population model, synaptic connections are often described by spike connections, and connection strengths within the population are assumed to be uniform. Thus, the effects of synaptic connections variation on network synchronization remain unclear. Based on recent advances in mean field theory for the quadratic integrate-and-fire neuronal network model, we introduce synaptic conductance and variation of connection strength into the excitatory and inhibitory neuronal population model and derive the macroscopic firing rate equations for faithful modeling. We then introduce a heuristic switching rule of the dynamic system with respect to the mean membrane potentials to avoid divergences in the computation caused by variations in the neuronal connection strength. We show that the switching rule agrees with the numerical computation of the microscopic level model. In the derived model, variations in synaptic conductance and connection strength strongly alter the stability of the solutions to the equations, which is related to the mechanism of synchronous firing. When we apply physiologically plausible values from layer 4 of the mammalian primary visual cortex to the derived model, we observe event-related desynchronization at the alpha and beta frequencies and event-related synchronization at the gamma frequency over a wide range of balanced external currents. Our results show that the introduction of complex synaptic connections and physiologically valid numerical values into the low-dimensional mean field equations reproduces dynamic changes such as eventrelated (de)synchronization, and provides a unique mathematical insight into the relationship between synaptic strength variation and oscillatory mechanism.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"37 5\",\"pages\":\"987-1009\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979824/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979824/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

神经网络的复杂性允许不同的神经元种群动态,实现更高阶的大脑功能,如认知和记忆。由于突触的可塑性,化学突触的电导呈指数衰减,神经元连接强度的变化更大,从而增强了复杂性。然而,在宏观神经元群体模型中,突触连接通常被描述为尖峰连接,并且假设群体内的连接强度是均匀的。因此,突触连接变化对网络同步的影响尚不清楚。基于二次积分-放电神经网络模型平均场理论的最新进展,我们将突触电导和连接强度的变化引入兴奋性和抑制性神经元群模型中,并推导出宏观放电率方程,以忠实地建模。然后,我们引入了动态系统相对于平均膜电位的启发式切换规则,以避免由于神经元连接强度的变化而导致的计算分歧。结果表明,该开关规则与微观水平模型的数值计算一致。在推导的模型中,突触电导和连接强度的变化强烈地改变了方程解的稳定性,这与同步放电的机制有关。当我们将哺乳动物初级视觉皮层第4层的生理合理值应用于衍生模型时,我们观察到在广泛的平衡外部电流范围内,α和β频率上的事件相关非同步和γ频率上的事件相关同步。我们的研究结果表明,在低维平均场方程中引入复杂的突触连接和生理上有效的数值再现了事件相关(去)同步等动态变化,并为突触强度变化与振荡机制之间的关系提供了独特的数学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Synaptic Connection Strength Changes Dynamics in a Population Firing Rate Model in Response to Continuous External Stimuli
Neural network complexity allows for diverse neuronal population dynamics and realizes higherorder brain functions such as cognition and memory. Complexity is enhanced through chemical synapses with exponentially decaying conductance and greater variation in the neuronal connection strength due to synaptic plasticity. However, in the macroscopic neuronal population model, synaptic connections are often described by spike connections, and connection strengths within the population are assumed to be uniform. Thus, the effects of synaptic connections variation on network synchronization remain unclear. Based on recent advances in mean field theory for the quadratic integrate-and-fire neuronal network model, we introduce synaptic conductance and variation of connection strength into the excitatory and inhibitory neuronal population model and derive the macroscopic firing rate equations for faithful modeling. We then introduce a heuristic switching rule of the dynamic system with respect to the mean membrane potentials to avoid divergences in the computation caused by variations in the neuronal connection strength. We show that the switching rule agrees with the numerical computation of the microscopic level model. In the derived model, variations in synaptic conductance and connection strength strongly alter the stability of the solutions to the equations, which is related to the mechanism of synchronous firing. When we apply physiologically plausible values from layer 4 of the mammalian primary visual cortex to the derived model, we observe event-related desynchronization at the alpha and beta frequencies and event-related synchronization at the gamma frequency over a wide range of balanced external currents. Our results show that the introduction of complex synaptic connections and physiologically valid numerical values into the low-dimensional mean field equations reproduces dynamic changes such as eventrelated (de)synchronization, and provides a unique mathematical insight into the relationship between synaptic strength variation and oscillatory mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信