HSV-1 糖蛋白 D 和氢氧化铝对人类神经母细胞瘤细胞的联合作用:对DNA氧化损伤、细胞凋亡和表观遗传修饰的启示

IF 3.4 3区 医学 Q2 NEUROSCIENCES
Deniz Arca Çakır , Anıl Yirün , Selinay Başak Erdemli-Köse , Göksun Demirel , Jülide Secerli , Merve Güdül-Bacanlı , Pınar Erkekoğlu
{"title":"HSV-1 糖蛋白 D 和氢氧化铝对人类神经母细胞瘤细胞的联合作用:对DNA氧化损伤、细胞凋亡和表观遗传修饰的启示","authors":"Deniz Arca Çakır ,&nbsp;Anıl Yirün ,&nbsp;Selinay Başak Erdemli-Köse ,&nbsp;Göksun Demirel ,&nbsp;Jülide Secerli ,&nbsp;Merve Güdül-Bacanlı ,&nbsp;Pınar Erkekoğlu","doi":"10.1016/j.neuro.2025.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>Herpes simplex virus type 1 (HSV-1) infections are a significant global health concern due to the virus's ability to evade apoptosis and establish lifelong latency in the peripheral nervous system. The specific viral components responsible for these effects remain unclear, necessitating individual examination of their molecular impacts. This study focused on investigating the effects of recombinant HSV-1 glycoprotein D (HSV-1 gD), a viral protein essential for host cell entry, and/or aluminum hydroxide, a known neurotoxic agent, on reactive oxygen species (ROS) production, apoptotic markers, and epigenetic modifications in SH-SY5Y neuroblastoma cells. Using inhibitory concentration 20 (IC<sub>20</sub>) values for HSV-1 gD and aluminum hydroxide, experimental groups were established. Intracellular ROS levels, oxidative DNA damage, and the expression and activity of key apoptotic proteins were measured. Additionally, global DNA methylation, histone H3 and H4 acetylation, and the activities of histone deacetylases (HDAC3 and HDAC8) were evaluated. Results of the study showed that both HSV-1 gD and aluminum hydroxide independently increased ROS production and induced apoptosis in SH-SY5Y cells. Notably, significant alterations in epigenetic markers were observed, including decreased global DNA methylation and histone acetylation levels. These epigenetic modifications suggest potential underlying mechanisms for the neurotoxic effects of aluminum hydroxide and HSV-1 gD. In addition to the traditional suggestions for HSV-1 gD as an anti-apoptotic factor, our findings indicate that it may also contribute to neurotoxicity. This study provides new insights into the molecular interactions between viral components and neurotoxic agents and emphasizes the importance of epigenetic regulation in neuronal cell death.</div></div>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":"108 ","pages":"Pages 123-133"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The combined effects of HSV-1 glycoprotein D and aluminum hydroxide on human neuroblastoma cells: Insights into oxidative DNA damage, apoptosis, and epigenetic modifications\",\"authors\":\"Deniz Arca Çakır ,&nbsp;Anıl Yirün ,&nbsp;Selinay Başak Erdemli-Köse ,&nbsp;Göksun Demirel ,&nbsp;Jülide Secerli ,&nbsp;Merve Güdül-Bacanlı ,&nbsp;Pınar Erkekoğlu\",\"doi\":\"10.1016/j.neuro.2025.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herpes simplex virus type 1 (HSV-1) infections are a significant global health concern due to the virus's ability to evade apoptosis and establish lifelong latency in the peripheral nervous system. The specific viral components responsible for these effects remain unclear, necessitating individual examination of their molecular impacts. This study focused on investigating the effects of recombinant HSV-1 glycoprotein D (HSV-1 gD), a viral protein essential for host cell entry, and/or aluminum hydroxide, a known neurotoxic agent, on reactive oxygen species (ROS) production, apoptotic markers, and epigenetic modifications in SH-SY5Y neuroblastoma cells. Using inhibitory concentration 20 (IC<sub>20</sub>) values for HSV-1 gD and aluminum hydroxide, experimental groups were established. Intracellular ROS levels, oxidative DNA damage, and the expression and activity of key apoptotic proteins were measured. Additionally, global DNA methylation, histone H3 and H4 acetylation, and the activities of histone deacetylases (HDAC3 and HDAC8) were evaluated. Results of the study showed that both HSV-1 gD and aluminum hydroxide independently increased ROS production and induced apoptosis in SH-SY5Y cells. Notably, significant alterations in epigenetic markers were observed, including decreased global DNA methylation and histone acetylation levels. These epigenetic modifications suggest potential underlying mechanisms for the neurotoxic effects of aluminum hydroxide and HSV-1 gD. In addition to the traditional suggestions for HSV-1 gD as an anti-apoptotic factor, our findings indicate that it may also contribute to neurotoxicity. This study provides new insights into the molecular interactions between viral components and neurotoxic agents and emphasizes the importance of epigenetic regulation in neuronal cell death.</div></div>\",\"PeriodicalId\":19189,\"journal\":{\"name\":\"Neurotoxicology\",\"volume\":\"108 \",\"pages\":\"Pages 123-133\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161813X25000336\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161813X25000336","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The combined effects of HSV-1 glycoprotein D and aluminum hydroxide on human neuroblastoma cells: Insights into oxidative DNA damage, apoptosis, and epigenetic modifications
Herpes simplex virus type 1 (HSV-1) infections are a significant global health concern due to the virus's ability to evade apoptosis and establish lifelong latency in the peripheral nervous system. The specific viral components responsible for these effects remain unclear, necessitating individual examination of their molecular impacts. This study focused on investigating the effects of recombinant HSV-1 glycoprotein D (HSV-1 gD), a viral protein essential for host cell entry, and/or aluminum hydroxide, a known neurotoxic agent, on reactive oxygen species (ROS) production, apoptotic markers, and epigenetic modifications in SH-SY5Y neuroblastoma cells. Using inhibitory concentration 20 (IC20) values for HSV-1 gD and aluminum hydroxide, experimental groups were established. Intracellular ROS levels, oxidative DNA damage, and the expression and activity of key apoptotic proteins were measured. Additionally, global DNA methylation, histone H3 and H4 acetylation, and the activities of histone deacetylases (HDAC3 and HDAC8) were evaluated. Results of the study showed that both HSV-1 gD and aluminum hydroxide independently increased ROS production and induced apoptosis in SH-SY5Y cells. Notably, significant alterations in epigenetic markers were observed, including decreased global DNA methylation and histone acetylation levels. These epigenetic modifications suggest potential underlying mechanisms for the neurotoxic effects of aluminum hydroxide and HSV-1 gD. In addition to the traditional suggestions for HSV-1 gD as an anti-apoptotic factor, our findings indicate that it may also contribute to neurotoxicity. This study provides new insights into the molecular interactions between viral components and neurotoxic agents and emphasizes the importance of epigenetic regulation in neuronal cell death.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurotoxicology
Neurotoxicology 医学-毒理学
CiteScore
6.80
自引率
5.90%
发文量
161
审稿时长
70 days
期刊介绍: NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信