IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY
Daniel M Tadros, Julien Racle, David Gfeller
{"title":"Predicting MHC-I ligands across alleles and species: how far can we go?","authors":"Daniel M Tadros, Julien Racle, David Gfeller","doi":"10.1186/s13073-025-01450-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>CD8<sup>+</sup> T-cell activation is initiated by the recognition of epitopes presented on class I major histocompatibility complex (MHC-I) molecules. Identifying such epitopes is useful for molecular understanding of cellular immune responses and can guide the development of personalized vaccines for various diseases including cancer. For a few hundred common human and mouse MHC-I alleles, large datasets of ligands are available and machine learning MHC-I ligand predictors trained on such data reach high prediction accuracy. However, for the vast majority of other MHC-I alleles, no ligand is known.</p><p><strong>Methods: </strong>We capitalize on an expanded architecture of our MHC-I ligand predictor (MixMHCpred3.0) to systematically assess the extent to which predictions of MHC-I ligands can be applied to MHC-I alleles that currently lack known ligand data.</p><p><strong>Results: </strong>Our results reveal high prediction accuracy for most MHC-I alleles in human and in laboratory mouse strains, but significantly lower accuracy in other species. Our work further outlines some of the molecular determinants of MHC-I ligand prediction accuracy across alleles and species. Robust benchmarking on external data shows that our MHC-I ligand predictor demonstrates competitive performance relative to other state-of-the-art MHC-I ligand predictors and can be used for CD8<sup>+</sup> T-cell epitope predictions.</p><p><strong>Conclusions: </strong>Our work provides a valuable tool for predicting antigen presentation across all human and mouse MHC-I alleles. MixMHCpred3.0 tool is available at https://github.com/GfellerLab/MixMHCpred .</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"25"},"PeriodicalIF":10.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927126/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01450-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:CD8+ T 细胞活化是通过识别第一类主要组织相容性复合体(MHC-I)分子上的表位启动的。识别这些表位有助于从分子角度了解细胞免疫反应,并指导包括癌症在内的各种疾病的个性化疫苗的开发。对于几百种常见的人类和小鼠 MHC-I 等位基因,可以获得大量的配体数据集,在这些数据基础上训练的机器学习 MHC-I 配体预测器可以达到很高的预测准确率。然而,对于绝大多数其他 MHC-I 等位基因来说,配体是未知的:我们利用我们的 MHC-I 配体预测器(MixMHCpred3.0)的扩展架构,系统地评估了 MHC-I 配体预测在多大程度上可以应用于目前缺乏已知配体数据的 MHC-I 等位基因:结果:我们的研究结果表明,对人类和实验室小鼠品系的大多数 MHC-I 等位基因的预测准确率很高,但对其他物种的预测准确率则明显较低。我们的工作进一步概述了不同等位基因和物种中 MHC-I 配体预测准确性的一些分子决定因素。对外部数据进行的稳健基准测试表明,我们的 MHC-I 配体预测器与其他最先进的 MHC-I 配体预测器相比具有竞争力,可用于 CD8+ T 细胞表位预测:我们的工作为预测人类和小鼠所有 MHC-I 等位基因的抗原呈递提供了一个有价值的工具。MixMHCpred3.0工具可在https://github.com/GfellerLab/MixMHCpred。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting MHC-I ligands across alleles and species: how far can we go?

Background: CD8+ T-cell activation is initiated by the recognition of epitopes presented on class I major histocompatibility complex (MHC-I) molecules. Identifying such epitopes is useful for molecular understanding of cellular immune responses and can guide the development of personalized vaccines for various diseases including cancer. For a few hundred common human and mouse MHC-I alleles, large datasets of ligands are available and machine learning MHC-I ligand predictors trained on such data reach high prediction accuracy. However, for the vast majority of other MHC-I alleles, no ligand is known.

Methods: We capitalize on an expanded architecture of our MHC-I ligand predictor (MixMHCpred3.0) to systematically assess the extent to which predictions of MHC-I ligands can be applied to MHC-I alleles that currently lack known ligand data.

Results: Our results reveal high prediction accuracy for most MHC-I alleles in human and in laboratory mouse strains, but significantly lower accuracy in other species. Our work further outlines some of the molecular determinants of MHC-I ligand prediction accuracy across alleles and species. Robust benchmarking on external data shows that our MHC-I ligand predictor demonstrates competitive performance relative to other state-of-the-art MHC-I ligand predictors and can be used for CD8+ T-cell epitope predictions.

Conclusions: Our work provides a valuable tool for predicting antigen presentation across all human and mouse MHC-I alleles. MixMHCpred3.0 tool is available at https://github.com/GfellerLab/MixMHCpred .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信