Christelle Marminon, Christian Werner, Alexander Gast, Lars Herfindal, Johana Charles, Dirk Lindenblatt, Dagmar Aichele, Angélique Mularoni, Stein Ove Døskeland, Joachim Jose, Karsten Niefind, Marc Le Borgne
{"title":"探索溴化吲哚 MC11 的生物潜力及其与蛋白激酶 CK2 的相互作用。","authors":"Christelle Marminon, Christian Werner, Alexander Gast, Lars Herfindal, Johana Charles, Dirk Lindenblatt, Dagmar Aichele, Angélique Mularoni, Stein Ove Døskeland, Joachim Jose, Karsten Niefind, Marc Le Borgne","doi":"10.1515/hsz-2024-0160","DOIUrl":null,"url":null,"abstract":"<p><p>Protein kinase CK2 is a promising therapeutic target, especially in oncology. Over the years, various inhibitors have been developed, with polyhalogenated scaffolds emerging as a particularly effective class. Halogens like bromine and chlorine enhance inhibitor stability by forming additional interactions within the ATP pocket. Among halogenated scaffolds, benzotriazole and benzimidazole have led to potent molecules such as 4,5,6,7-tetrabromo-1<i>H</i>-benzotriazole (IC<sub>50</sub> = 300 nM) and 4,5,6,7-tetrabromo-2-(dimethylamino)benzimidazole (IC<sub>50</sub> = 140 nM). Modifications, including 4,5,6-tribromo-7-ethyl-1<i>H</i>-benzotriazole (IC<sub>50</sub> = 160 nM), further improved activity. Changing scaffolds while retaining halogens has enabled design of new inhibitors. Flavonols, dibenzofuranones, and the indeno[1,2-<i>b</i>]indole scaffold are key examples. Halogenation of the reference molecule 5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-<i>b</i>]indole-9,10-dione (<b>4b</b>, IC<sub>50</sub> = 360 nM) significantly boosted potency. The study focused on introducing four halogens, yielding to the compound 1,2,3,4-tetrabromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-<i>b</i>]indole-9,10-dione (<b>MC11</b>), with an IC<sub>50</sub> of 16 nM. Co-crystallography revealed how bromine atoms enhance binding, and <b>MC11</b> demonstrated strong <i>in cellulo</i> activity, particularly against leukemic cell lines like IPC-Bcl2.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"125-138"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the biological potential of the brominated indenoindole MC11 and its interaction with protein kinase CK2.\",\"authors\":\"Christelle Marminon, Christian Werner, Alexander Gast, Lars Herfindal, Johana Charles, Dirk Lindenblatt, Dagmar Aichele, Angélique Mularoni, Stein Ove Døskeland, Joachim Jose, Karsten Niefind, Marc Le Borgne\",\"doi\":\"10.1515/hsz-2024-0160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein kinase CK2 is a promising therapeutic target, especially in oncology. Over the years, various inhibitors have been developed, with polyhalogenated scaffolds emerging as a particularly effective class. Halogens like bromine and chlorine enhance inhibitor stability by forming additional interactions within the ATP pocket. Among halogenated scaffolds, benzotriazole and benzimidazole have led to potent molecules such as 4,5,6,7-tetrabromo-1<i>H</i>-benzotriazole (IC<sub>50</sub> = 300 nM) and 4,5,6,7-tetrabromo-2-(dimethylamino)benzimidazole (IC<sub>50</sub> = 140 nM). Modifications, including 4,5,6-tribromo-7-ethyl-1<i>H</i>-benzotriazole (IC<sub>50</sub> = 160 nM), further improved activity. Changing scaffolds while retaining halogens has enabled design of new inhibitors. Flavonols, dibenzofuranones, and the indeno[1,2-<i>b</i>]indole scaffold are key examples. Halogenation of the reference molecule 5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-<i>b</i>]indole-9,10-dione (<b>4b</b>, IC<sub>50</sub> = 360 nM) significantly boosted potency. The study focused on introducing four halogens, yielding to the compound 1,2,3,4-tetrabromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-<i>b</i>]indole-9,10-dione (<b>MC11</b>), with an IC<sub>50</sub> of 16 nM. Co-crystallography revealed how bromine atoms enhance binding, and <b>MC11</b> demonstrated strong <i>in cellulo</i> activity, particularly against leukemic cell lines like IPC-Bcl2.</p>\",\"PeriodicalId\":8885,\"journal\":{\"name\":\"Biological Chemistry\",\"volume\":\" \",\"pages\":\"125-138\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/hsz-2024-0160\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2024-0160","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring the biological potential of the brominated indenoindole MC11 and its interaction with protein kinase CK2.
Protein kinase CK2 is a promising therapeutic target, especially in oncology. Over the years, various inhibitors have been developed, with polyhalogenated scaffolds emerging as a particularly effective class. Halogens like bromine and chlorine enhance inhibitor stability by forming additional interactions within the ATP pocket. Among halogenated scaffolds, benzotriazole and benzimidazole have led to potent molecules such as 4,5,6,7-tetrabromo-1H-benzotriazole (IC50 = 300 nM) and 4,5,6,7-tetrabromo-2-(dimethylamino)benzimidazole (IC50 = 140 nM). Modifications, including 4,5,6-tribromo-7-ethyl-1H-benzotriazole (IC50 = 160 nM), further improved activity. Changing scaffolds while retaining halogens has enabled design of new inhibitors. Flavonols, dibenzofuranones, and the indeno[1,2-b]indole scaffold are key examples. Halogenation of the reference molecule 5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4b, IC50 = 360 nM) significantly boosted potency. The study focused on introducing four halogens, yielding to the compound 1,2,3,4-tetrabromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (MC11), with an IC50 of 16 nM. Co-crystallography revealed how bromine atoms enhance binding, and MC11 demonstrated strong in cellulo activity, particularly against leukemic cell lines like IPC-Bcl2.
期刊介绍:
Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.