大语言模型在药物诱导骨毒性预测中的应用

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Yi-Qi Chen, Tao Yu, Zheng-Qi Song, Chen-Yu Wang, Jiang-Tao Luo, Yong Xiao, Heng Qiu, Qing-Qing Wang, Hai-Ming Jin
{"title":"大语言模型在药物诱导骨毒性预测中的应用","authors":"Yi-Qi Chen, Tao Yu, Zheng-Qi Song, Chen-Yu Wang, Jiang-Tao Luo, Yong Xiao, Heng Qiu, Qing-Qing Wang, Hai-Ming Jin","doi":"10.1021/acs.jcim.5c00275","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-induced osteotoxicity refers to the harmful effects certain drugs have on the skeletal system, posing significant safety risks. These toxic effects are a key concern in clinical practice, drug development, and environmental management. However, existing toxicity assessment models lack specialized data sets and algorithms for predicting osteotoxicity. In our study, we collected osteotoxic molecules and employed various large language models, including DeepSeek and ChatGPT, alongside traditional machine learning methods to predict their properties. Among these, the DeepSeek R1 and ChatGPT o3 models achieved ACC values of 0.87 and 0.88, respectively. Our results indicate that machine learning methods can assist in evaluating the impact of harmful substances on bone health during drug development, improving safety protocols, mitigating skeletal side effects, and enhancing treatment outcomes and public safety. Furthermore, it highlights the potential of large language models in predicting molecular toxicity and their significance in the fields of health and chemical sciences.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Large Language Models in Drug-Induced Osteotoxicity Prediction.\",\"authors\":\"Yi-Qi Chen, Tao Yu, Zheng-Qi Song, Chen-Yu Wang, Jiang-Tao Luo, Yong Xiao, Heng Qiu, Qing-Qing Wang, Hai-Ming Jin\",\"doi\":\"10.1021/acs.jcim.5c00275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-induced osteotoxicity refers to the harmful effects certain drugs have on the skeletal system, posing significant safety risks. These toxic effects are a key concern in clinical practice, drug development, and environmental management. However, existing toxicity assessment models lack specialized data sets and algorithms for predicting osteotoxicity. In our study, we collected osteotoxic molecules and employed various large language models, including DeepSeek and ChatGPT, alongside traditional machine learning methods to predict their properties. Among these, the DeepSeek R1 and ChatGPT o3 models achieved ACC values of 0.87 and 0.88, respectively. Our results indicate that machine learning methods can assist in evaluating the impact of harmful substances on bone health during drug development, improving safety protocols, mitigating skeletal side effects, and enhancing treatment outcomes and public safety. Furthermore, it highlights the potential of large language models in predicting molecular toxicity and their significance in the fields of health and chemical sciences.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.5c00275\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00275","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Large Language Models in Drug-Induced Osteotoxicity Prediction.

Drug-induced osteotoxicity refers to the harmful effects certain drugs have on the skeletal system, posing significant safety risks. These toxic effects are a key concern in clinical practice, drug development, and environmental management. However, existing toxicity assessment models lack specialized data sets and algorithms for predicting osteotoxicity. In our study, we collected osteotoxic molecules and employed various large language models, including DeepSeek and ChatGPT, alongside traditional machine learning methods to predict their properties. Among these, the DeepSeek R1 and ChatGPT o3 models achieved ACC values of 0.87 and 0.88, respectively. Our results indicate that machine learning methods can assist in evaluating the impact of harmful substances on bone health during drug development, improving safety protocols, mitigating skeletal side effects, and enhancing treatment outcomes and public safety. Furthermore, it highlights the potential of large language models in predicting molecular toxicity and their significance in the fields of health and chemical sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信