超对称Klein-Gordon和Dirac振子

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Alexander D. Popov
{"title":"超对称Klein-Gordon和Dirac振子","authors":"Alexander D. Popov","doi":"10.1007/s11005-025-01927-y","DOIUrl":null,"url":null,"abstract":"<div><p>We have recently shown that the space of initial data (covariant phase space) of the relativistic oscillator in Minkowski space <span>\\(\\mathbb {R}^{3,1}\\)</span> is a homogeneous Kähler–Einstein manifold <span>\\(Z_6=\\textrm{AdS}_7/\\textrm{U}(1) =\\textrm{U}(3,1)/\\textrm{U}(3)\\times \\textrm{U}(1)\\)</span>. It was also shown that the energy eigenstates of the quantum relativistic oscillator form a direct sum of two weighted Bergman spaces of holomorphic (particles) and antiholomorphic (antiparticles) square-integrable functions on the covariant phase space <span>\\(Z_6\\)</span> of the classical oscillator. Here we show that the covariant phase space of the supersymmetric version of the relativistic oscillator (oscillating spinning particle) is the odd tangent bundle of the space <span>\\(Z_6\\)</span>. Quantizing this model yields a Dirac oscillator equation on the phase space whose solution space is a direct sum of two spinor spaces parametrized by holomorphic and antiholomorphic functions on the odd tangent bundle of <span>\\(Z_6\\)</span>. After expanding the general solution in Grassmann variables, we obtain components of the spinor field that are holomorphic and antiholomorphic functions from Bergman spaces on <span>\\(Z_6\\)</span> with different weight functions. Thus, the supersymmetric model under consideration is exactly solvable, Lorentz covariant and unitary.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01927-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Supersymmetric Klein–Gordon and Dirac oscillators\",\"authors\":\"Alexander D. Popov\",\"doi\":\"10.1007/s11005-025-01927-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have recently shown that the space of initial data (covariant phase space) of the relativistic oscillator in Minkowski space <span>\\\\(\\\\mathbb {R}^{3,1}\\\\)</span> is a homogeneous Kähler–Einstein manifold <span>\\\\(Z_6=\\\\textrm{AdS}_7/\\\\textrm{U}(1) =\\\\textrm{U}(3,1)/\\\\textrm{U}(3)\\\\times \\\\textrm{U}(1)\\\\)</span>. It was also shown that the energy eigenstates of the quantum relativistic oscillator form a direct sum of two weighted Bergman spaces of holomorphic (particles) and antiholomorphic (antiparticles) square-integrable functions on the covariant phase space <span>\\\\(Z_6\\\\)</span> of the classical oscillator. Here we show that the covariant phase space of the supersymmetric version of the relativistic oscillator (oscillating spinning particle) is the odd tangent bundle of the space <span>\\\\(Z_6\\\\)</span>. Quantizing this model yields a Dirac oscillator equation on the phase space whose solution space is a direct sum of two spinor spaces parametrized by holomorphic and antiholomorphic functions on the odd tangent bundle of <span>\\\\(Z_6\\\\)</span>. After expanding the general solution in Grassmann variables, we obtain components of the spinor field that are holomorphic and antiholomorphic functions from Bergman spaces on <span>\\\\(Z_6\\\\)</span> with different weight functions. Thus, the supersymmetric model under consideration is exactly solvable, Lorentz covariant and unitary.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-025-01927-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01927-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01927-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们最近证明了闵可夫斯基空间\(\mathbb {R}^{3,1}\)中相对论振子的初始数据空间(协变相空间)是齐次Kähler-Einstein流形\(Z_6=\textrm{AdS}_7/\textrm{U}(1) =\textrm{U}(3,1)/\textrm{U}(3)\times \textrm{U}(1)\)。还证明了量子相对论振子的能量本征态在经典振子的协变相空间\(Z_6\)上形成由全纯(粒子)和反全纯(反粒子)平方可积函数组成的两个加权Bergman空间的直接和。在这里,我们证明了相对论性振子(振荡自旋粒子)的超对称版本的协变相空间是空间\(Z_6\)的奇切束。量子化该模型得到相空间上的狄拉克振子方程,其解空间是由\(Z_6\)的奇切束上的全纯函数和反全纯函数参数化的两个旋量空间的直接和。在展开了Grassmann变量的通解后,我们得到了\(Z_6\)上Bergman空间中具有不同权函数的全纯函数和反全纯函数的旋量场分量。因此,所考虑的超对称模型是精确可解的、洛伦兹协变的和酉的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supersymmetric Klein–Gordon and Dirac oscillators

We have recently shown that the space of initial data (covariant phase space) of the relativistic oscillator in Minkowski space \(\mathbb {R}^{3,1}\) is a homogeneous Kähler–Einstein manifold \(Z_6=\textrm{AdS}_7/\textrm{U}(1) =\textrm{U}(3,1)/\textrm{U}(3)\times \textrm{U}(1)\). It was also shown that the energy eigenstates of the quantum relativistic oscillator form a direct sum of two weighted Bergman spaces of holomorphic (particles) and antiholomorphic (antiparticles) square-integrable functions on the covariant phase space \(Z_6\) of the classical oscillator. Here we show that the covariant phase space of the supersymmetric version of the relativistic oscillator (oscillating spinning particle) is the odd tangent bundle of the space \(Z_6\). Quantizing this model yields a Dirac oscillator equation on the phase space whose solution space is a direct sum of two spinor spaces parametrized by holomorphic and antiholomorphic functions on the odd tangent bundle of \(Z_6\). After expanding the general solution in Grassmann variables, we obtain components of the spinor field that are holomorphic and antiholomorphic functions from Bergman spaces on \(Z_6\) with different weight functions. Thus, the supersymmetric model under consideration is exactly solvable, Lorentz covariant and unitary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信