Isomiddin Nishonov, Javlon Rayimbaev, Saeed Ullah Khan, Muhammad Zahid, Temurmalik Tolibjanov, Inomjon Ibragimov
{"title":"Collisions and particle dynamics around black holes surrounded by PFDM in STVG","authors":"Isomiddin Nishonov, Javlon Rayimbaev, Saeed Ullah Khan, Muhammad Zahid, Temurmalik Tolibjanov, Inomjon Ibragimov","doi":"10.1140/epjc/s10052-025-13945-0","DOIUrl":null,"url":null,"abstract":"<div><p>Testing dark matter effects on gravity around black holes in the framework of gravity theories through observational data is an essential task of relativistic astrophysical studies. In this work, we first obtain a new spacetime solution for a black hole surrounded by perfect fluid dark matter (PFDM) in modified gravity (MOG). The MOG field is assumed to be a gravitational vector field. We investigate the vector fields with combined effects of PFDM on spacetime properties: event horizon radius, scalar invariants such as the Ricci scalar, the square of the Ricci tensor, and Kretchman scalars. We investigate the circular motion of test particles in the spacetime of the black hole, taking into account the MOG field interaction on the particle geodesics. The energy and angular momentum of the particles corresponding to circular orbits are studied. In addition, we explore how the PFDM and MOG fields change the position of innermost stable circular orbits (ISCOs) and their corresponding energy and angular momentum values. Moreover, we study the energy efficiency rate around the black hole in the Novikov and Thorns thin accretion disc model. We analyze collisional cases of the particles near the black hole and study the effects of the fields on the critical angular momentum in which particles can collide near the black hole and the center-of-mass energy of the colliding particles.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13945-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13945-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Collisions and particle dynamics around black holes surrounded by PFDM in STVG
Testing dark matter effects on gravity around black holes in the framework of gravity theories through observational data is an essential task of relativistic astrophysical studies. In this work, we first obtain a new spacetime solution for a black hole surrounded by perfect fluid dark matter (PFDM) in modified gravity (MOG). The MOG field is assumed to be a gravitational vector field. We investigate the vector fields with combined effects of PFDM on spacetime properties: event horizon radius, scalar invariants such as the Ricci scalar, the square of the Ricci tensor, and Kretchman scalars. We investigate the circular motion of test particles in the spacetime of the black hole, taking into account the MOG field interaction on the particle geodesics. The energy and angular momentum of the particles corresponding to circular orbits are studied. In addition, we explore how the PFDM and MOG fields change the position of innermost stable circular orbits (ISCOs) and their corresponding energy and angular momentum values. Moreover, we study the energy efficiency rate around the black hole in the Novikov and Thorns thin accretion disc model. We analyze collisional cases of the particles near the black hole and study the effects of the fields on the critical angular momentum in which particles can collide near the black hole and the center-of-mass energy of the colliding particles.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.