使用nanogravity 15年数据集的引力波背景约束弦宇宙学

IF 4.8 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Qin Tan, You Wu, Lang Liu
{"title":"使用nanogravity 15年数据集的引力波背景约束弦宇宙学","authors":"Qin Tan,&nbsp;You Wu,&nbsp;Lang Liu","doi":"10.1140/epjc/s10052-025-13998-1","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple pulsar timing array (PTA) collaborations, including the European PTA in partnership with the Indian PTA, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the Parkes PTA, and the Chinese PTA have recently reported strong evidence for a signal at nanohertz, potentially the first detection of the stochastic gravitational-wave background (SGWB). We investigate whether the NANOGrav signal is consistent with the SGWB predicted by string cosmology models. By performing Bayesian parameter estimation on the NANOGrav 15-year data set, we constrain the key parameters of a string cosmology model: the frequency <span>\\(f_s\\)</span> and the fractional energy density <span>\\(\\Omega _\\textrm{gw}^{s}\\)</span> of gravitational waves at the end of the dilaton-driven stage, and the Hubble parameter <span>\\(H_r\\)</span> at the end of the string phase. Our analysis yields constraints of <span>\\(f_s = 1.2^{+0.6}_{-\\,0.6}\\times 10^{-8} \\textrm{Hz}\\)</span> and <span>\\(\\Omega _\\textrm{gw}^{s} = 2.9^{+5.4}_{-2.3}\\times 10^{-8}\\)</span>, consistent with theoretical predictions from string cosmology. However, the current NANOGrav data is not sensitive to the <span>\\(H_r\\)</span> parameter. We also compare the string cosmology model to a simple power-law model using Bayesian model selection, finding a Bayes factor of 2.2 in favor of the string cosmology model. Future pulsar timing array observations with improved sensitivity and extended frequency coverage will enable tighter constraints on string cosmology parameters.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13998-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Constraining string cosmology with the gravitational-wave background using the NANOGrav 15-year data set\",\"authors\":\"Qin Tan,&nbsp;You Wu,&nbsp;Lang Liu\",\"doi\":\"10.1140/epjc/s10052-025-13998-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multiple pulsar timing array (PTA) collaborations, including the European PTA in partnership with the Indian PTA, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the Parkes PTA, and the Chinese PTA have recently reported strong evidence for a signal at nanohertz, potentially the first detection of the stochastic gravitational-wave background (SGWB). We investigate whether the NANOGrav signal is consistent with the SGWB predicted by string cosmology models. By performing Bayesian parameter estimation on the NANOGrav 15-year data set, we constrain the key parameters of a string cosmology model: the frequency <span>\\\\(f_s\\\\)</span> and the fractional energy density <span>\\\\(\\\\Omega _\\\\textrm{gw}^{s}\\\\)</span> of gravitational waves at the end of the dilaton-driven stage, and the Hubble parameter <span>\\\\(H_r\\\\)</span> at the end of the string phase. Our analysis yields constraints of <span>\\\\(f_s = 1.2^{+0.6}_{-\\\\,0.6}\\\\times 10^{-8} \\\\textrm{Hz}\\\\)</span> and <span>\\\\(\\\\Omega _\\\\textrm{gw}^{s} = 2.9^{+5.4}_{-2.3}\\\\times 10^{-8}\\\\)</span>, consistent with theoretical predictions from string cosmology. However, the current NANOGrav data is not sensitive to the <span>\\\\(H_r\\\\)</span> parameter. We also compare the string cosmology model to a simple power-law model using Bayesian model selection, finding a Bayes factor of 2.2 in favor of the string cosmology model. Future pulsar timing array observations with improved sensitivity and extended frequency coverage will enable tighter constraints on string cosmology parameters.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 3\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13998-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-13998-1\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13998-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

多个脉冲星定时阵列(PTA)合作,包括欧洲PTA与印度PTA合作,北美纳赫兹引力波天文台(nanogravity),帕克斯PTA和中国PTA最近报告了纳赫兹信号的有力证据,这可能是首次检测到随机引力波背景(SGWB)。我们研究了nanogravity信号是否与弦宇宙学模型预测的SGWB一致。通过对nanogravity 15年数据集进行贝叶斯参数估计,我们约束了弦宇宙学模型的关键参数:膨胀驱动阶段结束时引力波的频率\(f_s\)和分数能量密度\(\Omega _\textrm{gw}^{s}\),以及弦阶段结束时的哈勃参数\(H_r\)。我们的分析得到了\(f_s = 1.2^{+0.6}_{-\,0.6}\times 10^{-8} \textrm{Hz}\)和\(\Omega _\textrm{gw}^{s} = 2.9^{+5.4}_{-2.3}\times 10^{-8}\)的约束,与弦宇宙学的理论预测一致。但是,当前的nanogravity数据对\(H_r\)参数不敏感。我们还使用贝叶斯模型选择将弦宇宙学模型与一个简单的幂律模型进行了比较,发现弦宇宙学模型的贝叶斯系数为2.2。未来的脉冲星定时阵列观测将具有更高的灵敏度和更大的频率覆盖范围,这将使弦宇宙学参数得到更严格的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraining string cosmology with the gravitational-wave background using the NANOGrav 15-year data set

Multiple pulsar timing array (PTA) collaborations, including the European PTA in partnership with the Indian PTA, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the Parkes PTA, and the Chinese PTA have recently reported strong evidence for a signal at nanohertz, potentially the first detection of the stochastic gravitational-wave background (SGWB). We investigate whether the NANOGrav signal is consistent with the SGWB predicted by string cosmology models. By performing Bayesian parameter estimation on the NANOGrav 15-year data set, we constrain the key parameters of a string cosmology model: the frequency \(f_s\) and the fractional energy density \(\Omega _\textrm{gw}^{s}\) of gravitational waves at the end of the dilaton-driven stage, and the Hubble parameter \(H_r\) at the end of the string phase. Our analysis yields constraints of \(f_s = 1.2^{+0.6}_{-\,0.6}\times 10^{-8} \textrm{Hz}\) and \(\Omega _\textrm{gw}^{s} = 2.9^{+5.4}_{-2.3}\times 10^{-8}\), consistent with theoretical predictions from string cosmology. However, the current NANOGrav data is not sensitive to the \(H_r\) parameter. We also compare the string cosmology model to a simple power-law model using Bayesian model selection, finding a Bayes factor of 2.2 in favor of the string cosmology model. Future pulsar timing array observations with improved sensitivity and extended frequency coverage will enable tighter constraints on string cosmology parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信