自旋轨道和拉比耦合玻色-爱因斯坦凝聚体的不稳定驱动动力学

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Rajamanickam Ravisankar , Kannan Rajaswathi , Ramaswamy Radha , Paulsamy Muruganandam , Xianlong Gao
{"title":"自旋轨道和拉比耦合玻色-爱因斯坦凝聚体的不稳定驱动动力学","authors":"Rajamanickam Ravisankar ,&nbsp;Kannan Rajaswathi ,&nbsp;Ramaswamy Radha ,&nbsp;Paulsamy Muruganandam ,&nbsp;Xianlong Gao","doi":"10.1016/j.chaos.2025.116287","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the dynamics of quasi-one-dimensional Bose–Einstein condensates (BECs) with spin–orbit and Rabi couplings focusing on the role of nonlinear interactions in shaping the stability and dynamics of quantum phases like plane-wave and stripe-wave phases. Using the Bogoliubov–de-Gennes theory, we first analyze the stability of binary BECs with and without spin–orbit and Rabi couplings. Our results reveal distinct unstable and stable regimes in the nonlinear interaction parameter space, highlighting the emergence of soliton trains, beating effects, and stable breathers in both quantum phases under varying nonlinear interaction strengths and non-equilibrium conditions. Furthermore, we identify that specific combinations of interspecies and intraspecies interactions facilitate the emergence of the stable phonons and infinitesimal roton instabilities, which underpin the dynamically stable superfluid quantum droplet-like nature of the plane-wave and stripe-wave phases. In this context, stable phonons create quantum droplet-like structures in the absence of a trap. However, infinitesimal roton instabilities result in metastable states that can be stabilized with a relatively weak trap leading to stable stripe quantum droplets. These results which are validated through numerical simulations provide deeper insights into the nonlinear effects in spin–orbit and Rabi-coupled BECs.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"195 ","pages":"Article 116287"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instability-driven dynamics of spin–orbit and Rabi-coupled Bose–Einstein condensates\",\"authors\":\"Rajamanickam Ravisankar ,&nbsp;Kannan Rajaswathi ,&nbsp;Ramaswamy Radha ,&nbsp;Paulsamy Muruganandam ,&nbsp;Xianlong Gao\",\"doi\":\"10.1016/j.chaos.2025.116287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the dynamics of quasi-one-dimensional Bose–Einstein condensates (BECs) with spin–orbit and Rabi couplings focusing on the role of nonlinear interactions in shaping the stability and dynamics of quantum phases like plane-wave and stripe-wave phases. Using the Bogoliubov–de-Gennes theory, we first analyze the stability of binary BECs with and without spin–orbit and Rabi couplings. Our results reveal distinct unstable and stable regimes in the nonlinear interaction parameter space, highlighting the emergence of soliton trains, beating effects, and stable breathers in both quantum phases under varying nonlinear interaction strengths and non-equilibrium conditions. Furthermore, we identify that specific combinations of interspecies and intraspecies interactions facilitate the emergence of the stable phonons and infinitesimal roton instabilities, which underpin the dynamically stable superfluid quantum droplet-like nature of the plane-wave and stripe-wave phases. In this context, stable phonons create quantum droplet-like structures in the absence of a trap. However, infinitesimal roton instabilities result in metastable states that can be stabilized with a relatively weak trap leading to stable stripe quantum droplets. These results which are validated through numerical simulations provide deeper insights into the nonlinear effects in spin–orbit and Rabi-coupled BECs.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"195 \",\"pages\":\"Article 116287\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925003005\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003005","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有自旋-轨道和Rabi耦合的准一维玻色-爱因斯坦凝聚体(BECs)的动力学,重点研究了非线性相互作用在平面波和条纹波等量子相的稳定性和动力学中的作用。利用Bogoliubov-de-Gennes理论,我们首先分析了具有和不具有自旋轨道和Rabi耦合的二元bec的稳定性。我们的研究结果揭示了非线性相互作用参数空间中不同的不稳定和稳定状态,突出了在不同非线性相互作用强度和非平衡条件下两个量子相中孤子串、跳动效应和稳定呼吸者的出现。此外,我们发现种间和种内相互作用的特定组合促进了稳定声子和无限小转子不稳定性的出现,这支撑了平面波和条纹波相的动态稳定超流体量子液滴性质。在这种情况下,稳定声子在没有陷阱的情况下产生量子液滴状结构。然而,无穷小的旋转不稳定性会导致亚稳态,而亚稳态可以通过相对较弱的陷阱来稳定,从而产生稳定的条纹量子液滴。通过数值模拟验证了这些结果,从而对自旋轨道和rabi耦合bec的非线性效应有了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instability-driven dynamics of spin–orbit and Rabi-coupled Bose–Einstein condensates
We investigate the dynamics of quasi-one-dimensional Bose–Einstein condensates (BECs) with spin–orbit and Rabi couplings focusing on the role of nonlinear interactions in shaping the stability and dynamics of quantum phases like plane-wave and stripe-wave phases. Using the Bogoliubov–de-Gennes theory, we first analyze the stability of binary BECs with and without spin–orbit and Rabi couplings. Our results reveal distinct unstable and stable regimes in the nonlinear interaction parameter space, highlighting the emergence of soliton trains, beating effects, and stable breathers in both quantum phases under varying nonlinear interaction strengths and non-equilibrium conditions. Furthermore, we identify that specific combinations of interspecies and intraspecies interactions facilitate the emergence of the stable phonons and infinitesimal roton instabilities, which underpin the dynamically stable superfluid quantum droplet-like nature of the plane-wave and stripe-wave phases. In this context, stable phonons create quantum droplet-like structures in the absence of a trap. However, infinitesimal roton instabilities result in metastable states that can be stabilized with a relatively weak trap leading to stable stripe quantum droplets. These results which are validated through numerical simulations provide deeper insights into the nonlinear effects in spin–orbit and Rabi-coupled BECs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信