盐刺激盐生植物西伯利亚白刺的固碳以促进生长。

Forestry research Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.48130/forres-0025-0004
Lu Lu, Yuru Wang, Yuchang Chen, Liming Zhu, Xinru Wu, Jisen Shi, Jinhui Chen, Tielong Cheng
{"title":"盐刺激盐生植物西伯利亚白刺的固碳以促进生长。","authors":"Lu Lu, Yuru Wang, Yuchang Chen, Liming Zhu, Xinru Wu, Jisen Shi, Jinhui Chen, Tielong Cheng","doi":"10.48130/forres-0025-0004","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinity significantly inhibits plant productivity by adversely affecting photosynthesis and growth. <i>Nitraria sibirica</i>, a typical halophyte, exhibits strong salt tolerance. In this study, salt-treated <i>Nitraria sibirica</i> seedlings demonstrated more vigorous growth and a higher photosynthetic rate than untreated control seedlings. Transcriptome analysis revealed that the upregulated differentially expressed genes including <i>ribose 5-phosphate isomerase A</i>, <i>ribulose-bisphosphate carboxylase large chain,</i> and <i>malate dehydrogenase</i> in the leaves of <i>Nitraria sibirica</i> treated with 500 mM NaCl were significantly enriched in the 'Carbon fixation in photosynthetic organisms' pathway according to the Kyoto Encyclopedia of Genes and Genomes database. The promoters of these three photosynthetic differentially expressed genes were predicted to contain <i>cis</i>-regulatory elements responsive to light, abscisic acid, and ethylene. Notably, genes encoding 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in ethylene biosynthesis, and ethylene-responsive transcription factors were significantly upregulated in <i>Nitraria sibirica</i> under 500 mM NaCl treatment. Furthermore, quantitative real-time PCR analysis confirmed that the expression of these differentially expressed genes was significantly upregulated in <i>Nitraria sibirica</i> leaves treated with 500 mM NaCl and 500 mM ethephon for 1 h. In contrast, the expression of these salt-induced differentially expressed genes was significantly downregulated in <i>Nitraria sibirica</i> leaves treated with 500 μM aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, in combination with 500 mM NaCl for 1 h. These findings suggest that the enhanced photosynthesis observed in <i>Nitraria sibirica</i> under salt stress is likely mediated by ethylene signaling, which regulates the expression of genes involved in carbon fixation, thereby promoting vigorous plant growth.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"5 ","pages":"e004"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922184/pdf/","citationCount":"0","resultStr":"{\"title\":\"Salt stimulates carbon fixation in the halophyte <i>Nitraria sibirica</i> to enhance growth.\",\"authors\":\"Lu Lu, Yuru Wang, Yuchang Chen, Liming Zhu, Xinru Wu, Jisen Shi, Jinhui Chen, Tielong Cheng\",\"doi\":\"10.48130/forres-0025-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil salinity significantly inhibits plant productivity by adversely affecting photosynthesis and growth. <i>Nitraria sibirica</i>, a typical halophyte, exhibits strong salt tolerance. In this study, salt-treated <i>Nitraria sibirica</i> seedlings demonstrated more vigorous growth and a higher photosynthetic rate than untreated control seedlings. Transcriptome analysis revealed that the upregulated differentially expressed genes including <i>ribose 5-phosphate isomerase A</i>, <i>ribulose-bisphosphate carboxylase large chain,</i> and <i>malate dehydrogenase</i> in the leaves of <i>Nitraria sibirica</i> treated with 500 mM NaCl were significantly enriched in the 'Carbon fixation in photosynthetic organisms' pathway according to the Kyoto Encyclopedia of Genes and Genomes database. The promoters of these three photosynthetic differentially expressed genes were predicted to contain <i>cis</i>-regulatory elements responsive to light, abscisic acid, and ethylene. Notably, genes encoding 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in ethylene biosynthesis, and ethylene-responsive transcription factors were significantly upregulated in <i>Nitraria sibirica</i> under 500 mM NaCl treatment. Furthermore, quantitative real-time PCR analysis confirmed that the expression of these differentially expressed genes was significantly upregulated in <i>Nitraria sibirica</i> leaves treated with 500 mM NaCl and 500 mM ethephon for 1 h. In contrast, the expression of these salt-induced differentially expressed genes was significantly downregulated in <i>Nitraria sibirica</i> leaves treated with 500 μM aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, in combination with 500 mM NaCl for 1 h. These findings suggest that the enhanced photosynthesis observed in <i>Nitraria sibirica</i> under salt stress is likely mediated by ethylene signaling, which regulates the expression of genes involved in carbon fixation, thereby promoting vigorous plant growth.</p>\",\"PeriodicalId\":520285,\"journal\":{\"name\":\"Forestry research\",\"volume\":\"5 \",\"pages\":\"e004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forestry research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48130/forres-0025-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48130/forres-0025-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土壤盐分通过对光合作用和生长产生不利影响而显著抑制植物生产力。西伯利亚白刺是一种典型的盐生植物,具有很强的耐盐性。在本研究中,盐处理的西伯利亚白刺幼苗比未处理的对照幼苗生长更旺盛,光合速率更高。转录组分析显示,500 mM NaCl处理后的西伯利亚白刺叶片中,核糖5-磷酸异构酶A、核酮糖-二磷酸羧化酶大链和苹果酸脱氢酶等差异表达基因在“光合生物固碳”途径中显著富集。这三个光合差异表达基因的启动子预计包含对光、脱落酸和乙烯响应的顺式调控元件。值得一提的是,在500 mM NaCl处理下,西伯利亚白刺的乙烯合成关键酶1-氨基环丙烷-1-羧酸合成酶编码基因和乙烯应答转录因子显著上调。此外,实时荧光定量PCR分析证实,在500 mM NaCl和500 mM乙烯利处理1 h后,这些差异表达基因的表达显著上调。而在500 μM氨基乙氧基乙烯甘氨酸(乙烯生物合成抑制剂)处理1 h后,这些盐诱导的差异表达基因的表达则显著下调。上述结果表明,盐胁迫下西伯利亚白刺的光合作用增强可能是由乙烯信号介导的,乙烯信号调节固定碳相关基因的表达,从而促进植物生长旺盛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Salt stimulates carbon fixation in the halophyte Nitraria sibirica to enhance growth.

Soil salinity significantly inhibits plant productivity by adversely affecting photosynthesis and growth. Nitraria sibirica, a typical halophyte, exhibits strong salt tolerance. In this study, salt-treated Nitraria sibirica seedlings demonstrated more vigorous growth and a higher photosynthetic rate than untreated control seedlings. Transcriptome analysis revealed that the upregulated differentially expressed genes including ribose 5-phosphate isomerase A, ribulose-bisphosphate carboxylase large chain, and malate dehydrogenase in the leaves of Nitraria sibirica treated with 500 mM NaCl were significantly enriched in the 'Carbon fixation in photosynthetic organisms' pathway according to the Kyoto Encyclopedia of Genes and Genomes database. The promoters of these three photosynthetic differentially expressed genes were predicted to contain cis-regulatory elements responsive to light, abscisic acid, and ethylene. Notably, genes encoding 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in ethylene biosynthesis, and ethylene-responsive transcription factors were significantly upregulated in Nitraria sibirica under 500 mM NaCl treatment. Furthermore, quantitative real-time PCR analysis confirmed that the expression of these differentially expressed genes was significantly upregulated in Nitraria sibirica leaves treated with 500 mM NaCl and 500 mM ethephon for 1 h. In contrast, the expression of these salt-induced differentially expressed genes was significantly downregulated in Nitraria sibirica leaves treated with 500 μM aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, in combination with 500 mM NaCl for 1 h. These findings suggest that the enhanced photosynthesis observed in Nitraria sibirica under salt stress is likely mediated by ethylene signaling, which regulates the expression of genes involved in carbon fixation, thereby promoting vigorous plant growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信