IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-03-11 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf049
Francesco Costa, Rob Barringer, Ioannis Riziotis, Antonina Andreeva, Alex Bateman
{"title":"Isopeptor: a tool for detecting intramolecular isopeptide bonds in protein structures.","authors":"Francesco Costa, Rob Barringer, Ioannis Riziotis, Antonina Andreeva, Alex Bateman","doi":"10.1093/bioadv/vbaf049","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Intramolecular isopeptide bonds contribute to the structural stability of proteins, and have primarily been identified in domains of bacterial fibrillar adhesins and pili. At present, there is no systematic method available to detect them in newly determined molecular structures. This can result in mis-annotations and incorrect modeling.</p><p><strong>Results: </strong>Here, we present Isopeptor, a computational tool designed to predict the presence of intramolecular isopeptide bonds in experimentally determined structures. Isopeptor utilizes structure-guided template matching via the Jess software, combined with a logistic regression classifier that incorporates root mean square deviation and relative solvent accessible area as key features. The tool demonstrates a precision of 1.0 and a recall of 0.947 when tested on a Protein Data Bank subset of domains known to contain intramolecular isopeptide bonds that have been deposited with incorrectly modeled geometries.</p><p><strong>Availability and implementation: </strong>Isopeptor's Python-based implementation supports integration into bioinformatics workflows and can be accessed via the command line, through a Python API or via a Google Colaboratory implementation (https://colab.research.google.com/github/FranceCosta/Isopeptor_development/blob/main/notebooks/Isopeptide_finder.ipynb). Source code is hosted on GitHub (https://github.com/FranceCosta/isopeptor) and can be installed via the Python package installation manager PIP.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf049"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机分子内异肽键有助于提高蛋白质结构的稳定性,目前主要在细菌纤维状粘附蛋白和纤毛虫的结构域中发现了异肽键。目前,还没有系统的方法来检测新确定的分子结构中的异肽键。这可能导致错误标注和错误建模:结果:我们在此介绍 Isopeptor,这是一种计算工具,旨在预测实验确定的结构中是否存在分子内异肽键。Isopeptor 通过 Jess 软件利用结构引导模板匹配,结合逻辑回归分类器,将均方根偏差和相对溶剂可及面积作为关键特征。该工具在蛋白质数据库子集上进行测试时,精确度为 1.0,召回率为 0.947:Isopeptor基于Python的实现支持与生物信息学工作流的整合,可通过命令行、Python API或谷歌实验室实现(https://colab.research.google.com/github/FranceCosta/Isopeptor_development/blob/main/notebooks/Isopeptide_finder.ipynb)访问。源代码托管在 GitHub (https://github.com/FranceCosta/isopeptor) 上,可通过 Python 软件包安装管理器 PIP 安装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isopeptor: a tool for detecting intramolecular isopeptide bonds in protein structures.

Motivation: Intramolecular isopeptide bonds contribute to the structural stability of proteins, and have primarily been identified in domains of bacterial fibrillar adhesins and pili. At present, there is no systematic method available to detect them in newly determined molecular structures. This can result in mis-annotations and incorrect modeling.

Results: Here, we present Isopeptor, a computational tool designed to predict the presence of intramolecular isopeptide bonds in experimentally determined structures. Isopeptor utilizes structure-guided template matching via the Jess software, combined with a logistic regression classifier that incorporates root mean square deviation and relative solvent accessible area as key features. The tool demonstrates a precision of 1.0 and a recall of 0.947 when tested on a Protein Data Bank subset of domains known to contain intramolecular isopeptide bonds that have been deposited with incorrectly modeled geometries.

Availability and implementation: Isopeptor's Python-based implementation supports integration into bioinformatics workflows and can be accessed via the command line, through a Python API or via a Google Colaboratory implementation (https://colab.research.google.com/github/FranceCosta/Isopeptor_development/blob/main/notebooks/Isopeptide_finder.ipynb). Source code is hosted on GitHub (https://github.com/FranceCosta/isopeptor) and can be installed via the Python package installation manager PIP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信