组织和多种癌症类型(包括骨髓脱钙)的空间蛋白质组学和转录组学特征。

IF 2.2 4区 医学 Q3 ONCOLOGY
Cancer Biomarkers Pub Date : 2025-01-01 Epub Date: 2025-03-20 DOI:10.1177/18758592241308757
Cecilia Cs Yeung, Daniel C Jones, David W Woolston, Brandon Seaton, Elizabeth Lawless Donato, Minggang Lin, Coral Backman, Vivian Oehler, Kristin L Robinson, Kristen Shimp, Rima Kulikauskas, Annalyssa N Long, David Sowerby, Anna E Elz, Kimberly S Smythe, Evan W Newell
{"title":"组织和多种癌症类型(包括骨髓脱钙)的空间蛋白质组学和转录组学特征。","authors":"Cecilia Cs Yeung, Daniel C Jones, David W Woolston, Brandon Seaton, Elizabeth Lawless Donato, Minggang Lin, Coral Backman, Vivian Oehler, Kristin L Robinson, Kristen Shimp, Rima Kulikauskas, Annalyssa N Long, David Sowerby, Anna E Elz, Kimberly S Smythe, Evan W Newell","doi":"10.1177/18758592241308757","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundRecent technologies enabling the study of spatial biology include multiple high-dimensional spatial imaging methods that have rapidly emerged with different capabilities evaluating tissues at different resolutions for different sample formats. Platforms like Xenium (10x Genomics) and PhenoCycler-Fusion (Akoya Biosciences) enable single-cell resolution analysis of gene and protein expression in archival FFPE tissue slides. However, a key limitation is the absence of systematic methods to ensure tissue quality, marker integrity, and data reproducibility.ObjectiveWe seek to optimize the technical methods for spatial work by addressing preanalytical challenges with various tissue and tumor types, including a decalcification protocol for processing FFPE bone marrow core specimens to preserve nucleic acids for effective spatial proteomics and transcriptomics. This study characterizes a multicancer tissue microarray (TMA) and a molecular- and protein-friendly decalcification protocol that supports downstream spatial biology investigations.MethodsWe developed a multi-cancer tissue microarray (TMA) and processed bone marrow core samples using a molecular- and protein-friendly decalcification protocol. PhenoCycler high-plex immunohistochemistry (IHC) generated spatial proteomics data, analyzed with QuPath and single-cell analysis. Xenium provided spatial transcriptomics data, analyzed via Xenium Explorer and custom pipelines.ResultsResults showed that PhenoCycler and Xenium platforms applied to TMA sections of tonsil and various tumor types achieved good marker concordance. Bone marrow decalcification with our optimized protocol preserved mRNA and protein markers, allowing Xenium analysis to resolve all major cell types while maintaining tissue morphology.ConclusionsWe have shared our preanalytical verification of tissues and demonstrate that both the PhenoCycler-Fusion high-plex spatial proteomics and Xenium spatial transcriptomics platforms work well on various tumor types, including marrow core biopsies decalcified using a molecular- and protein-friendly decalcificationprotocol. We also demonstrate our laboratory's methods for systematic quality assessment of the spatial proteomic and transcriptomic data from these platforms, such that either platform can provide orthogonal confirmation for the other.</p>","PeriodicalId":56320,"journal":{"name":"Cancer Biomarkers","volume":"42 1","pages":"18758592241308757"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial proteomics and transcriptomics characterization of tissue and multiple cancer types including decalcified marrow.\",\"authors\":\"Cecilia Cs Yeung, Daniel C Jones, David W Woolston, Brandon Seaton, Elizabeth Lawless Donato, Minggang Lin, Coral Backman, Vivian Oehler, Kristin L Robinson, Kristen Shimp, Rima Kulikauskas, Annalyssa N Long, David Sowerby, Anna E Elz, Kimberly S Smythe, Evan W Newell\",\"doi\":\"10.1177/18758592241308757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundRecent technologies enabling the study of spatial biology include multiple high-dimensional spatial imaging methods that have rapidly emerged with different capabilities evaluating tissues at different resolutions for different sample formats. Platforms like Xenium (10x Genomics) and PhenoCycler-Fusion (Akoya Biosciences) enable single-cell resolution analysis of gene and protein expression in archival FFPE tissue slides. However, a key limitation is the absence of systematic methods to ensure tissue quality, marker integrity, and data reproducibility.ObjectiveWe seek to optimize the technical methods for spatial work by addressing preanalytical challenges with various tissue and tumor types, including a decalcification protocol for processing FFPE bone marrow core specimens to preserve nucleic acids for effective spatial proteomics and transcriptomics. This study characterizes a multicancer tissue microarray (TMA) and a molecular- and protein-friendly decalcification protocol that supports downstream spatial biology investigations.MethodsWe developed a multi-cancer tissue microarray (TMA) and processed bone marrow core samples using a molecular- and protein-friendly decalcification protocol. PhenoCycler high-plex immunohistochemistry (IHC) generated spatial proteomics data, analyzed with QuPath and single-cell analysis. Xenium provided spatial transcriptomics data, analyzed via Xenium Explorer and custom pipelines.ResultsResults showed that PhenoCycler and Xenium platforms applied to TMA sections of tonsil and various tumor types achieved good marker concordance. Bone marrow decalcification with our optimized protocol preserved mRNA and protein markers, allowing Xenium analysis to resolve all major cell types while maintaining tissue morphology.ConclusionsWe have shared our preanalytical verification of tissues and demonstrate that both the PhenoCycler-Fusion high-plex spatial proteomics and Xenium spatial transcriptomics platforms work well on various tumor types, including marrow core biopsies decalcified using a molecular- and protein-friendly decalcificationprotocol. We also demonstrate our laboratory's methods for systematic quality assessment of the spatial proteomic and transcriptomic data from these platforms, such that either platform can provide orthogonal confirmation for the other.</p>\",\"PeriodicalId\":56320,\"journal\":{\"name\":\"Cancer Biomarkers\",\"volume\":\"42 1\",\"pages\":\"18758592241308757\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biomarkers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/18758592241308757\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biomarkers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/18758592241308757","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

空间生物学研究的最新技术包括多种高维空间成像方法,这些方法迅速出现,具有不同的能力,可以评估不同分辨率下不同样本格式的组织。Xenium (10x Genomics)和PhenoCycler-Fusion (Akoya Biosciences)等平台能够对存档FFPE组织载玻片中的基因和蛋白质表达进行单细胞分辨率分析。然而,一个关键的限制是缺乏系统的方法来确保组织质量、标记完整性和数据可重复性。通过解决各种组织和肿瘤类型的分析前挑战,我们寻求优化空间工作的技术方法,包括处理FFPE骨髓核心标本的脱钙方案,以保存核酸,用于有效的空间蛋白质组学和转录组学。本研究描述了一种多癌组织微阵列(TMA)和一种支持下游空间生物学研究的分子和蛋白质友好脱钙方案。方法我们开发了一种多癌组织微阵列(TMA),并使用分子和蛋白质友好脱钙方案处理骨髓核心样品。PhenoCycler高复合免疫组化(IHC)生成空间蛋白质组学数据,使用QuPath和单细胞分析进行分析。Xenium提供空间转录组学数据,通过Xenium Explorer和定制管道进行分析。结果PhenoCycler和Xenium平台应用于扁桃体TMA切片和各种肿瘤类型具有良好的标记一致性。采用我们优化的方案进行骨髓脱钙保存mRNA和蛋白质标记物,允许Xenium分析在保持组织形态的同时解决所有主要细胞类型。我们已经分享了我们对组织的分析前验证,并证明PhenoCycler-Fusion高plex空间蛋白质组学和Xenium空间转录组学平台在各种肿瘤类型上都很有效,包括使用分子和蛋白质友好脱钙方案脱钙的骨髓核心活检。我们还展示了我们实验室对来自这些平台的空间蛋白质组学和转录组学数据进行系统质量评估的方法,这样任何一个平台都可以为另一个平台提供正交确认。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial proteomics and transcriptomics characterization of tissue and multiple cancer types including decalcified marrow.

BackgroundRecent technologies enabling the study of spatial biology include multiple high-dimensional spatial imaging methods that have rapidly emerged with different capabilities evaluating tissues at different resolutions for different sample formats. Platforms like Xenium (10x Genomics) and PhenoCycler-Fusion (Akoya Biosciences) enable single-cell resolution analysis of gene and protein expression in archival FFPE tissue slides. However, a key limitation is the absence of systematic methods to ensure tissue quality, marker integrity, and data reproducibility.ObjectiveWe seek to optimize the technical methods for spatial work by addressing preanalytical challenges with various tissue and tumor types, including a decalcification protocol for processing FFPE bone marrow core specimens to preserve nucleic acids for effective spatial proteomics and transcriptomics. This study characterizes a multicancer tissue microarray (TMA) and a molecular- and protein-friendly decalcification protocol that supports downstream spatial biology investigations.MethodsWe developed a multi-cancer tissue microarray (TMA) and processed bone marrow core samples using a molecular- and protein-friendly decalcification protocol. PhenoCycler high-plex immunohistochemistry (IHC) generated spatial proteomics data, analyzed with QuPath and single-cell analysis. Xenium provided spatial transcriptomics data, analyzed via Xenium Explorer and custom pipelines.ResultsResults showed that PhenoCycler and Xenium platforms applied to TMA sections of tonsil and various tumor types achieved good marker concordance. Bone marrow decalcification with our optimized protocol preserved mRNA and protein markers, allowing Xenium analysis to resolve all major cell types while maintaining tissue morphology.ConclusionsWe have shared our preanalytical verification of tissues and demonstrate that both the PhenoCycler-Fusion high-plex spatial proteomics and Xenium spatial transcriptomics platforms work well on various tumor types, including marrow core biopsies decalcified using a molecular- and protein-friendly decalcificationprotocol. We also demonstrate our laboratory's methods for systematic quality assessment of the spatial proteomic and transcriptomic data from these platforms, such that either platform can provide orthogonal confirmation for the other.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Biomarkers
Cancer Biomarkers ONCOLOGY-
CiteScore
5.20
自引率
3.20%
发文量
195
审稿时长
3 months
期刊介绍: Concentrating on molecular biomarkers in cancer research, Cancer Biomarkers publishes original research findings (and reviews solicited by the editor) on the subject of the identification of markers associated with the disease processes whether or not they are an integral part of the pathological lesion. The disease markers may include, but are not limited to, genomic, epigenomic, proteomics, cellular and morphologic, and genetic factors predisposing to the disease or indicating the occurrence of the disease. Manuscripts on these factors or biomarkers, either in altered forms, abnormal concentrations or with abnormal tissue distribution leading to disease causation will be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信