圆柱对称框架的刚度。

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2025-01-01 Epub Date: 2025-03-06 DOI:10.1007/s00454-025-00723-8
Anthony Nixon, Bernd Schulze, Joseph Wall
{"title":"圆柱对称框架的刚度。","authors":"Anthony Nixon, Bernd Schulze, Joseph Wall","doi":"10.1007/s00454-025-00723-8","DOIUrl":null,"url":null,"abstract":"<p><p>A bar-joint framework (<i>G</i>, <i>p</i>) is the combination of a finite simple graph <math><mrow><mi>G</mi> <mo>=</mo> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo>)</mo></mrow> </math> and a placement <math><mrow><mi>p</mi> <mo>:</mo> <mi>V</mi> <mo>→</mo> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> </mrow> </math> . The framework is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of the space. This article combines two recent extensions of the generic theory of rigid and flexible graphs by considering symmetric frameworks in <math> <msup><mrow><mi>R</mi></mrow> <mn>3</mn></msup> </math> restricted to move on a surface. In particular necessary combinatorial conditions are given for a symmetric framework on the cylinder to be isostatic (i.e. minimally infinitesimally rigid) under any finite point group symmetry. In every case when the symmetry group is cyclic, which we prove restricts the group to being inversion, half-turn or reflection symmetry, these conditions are then shown to be sufficient under suitable genericity assumptions, giving precise combinatorial descriptions of symmetric isostatic graphs in these contexts.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"73 3","pages":"629-673"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914369/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rigidity of Symmetric Frameworks on the Cylinder.\",\"authors\":\"Anthony Nixon, Bernd Schulze, Joseph Wall\",\"doi\":\"10.1007/s00454-025-00723-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A bar-joint framework (<i>G</i>, <i>p</i>) is the combination of a finite simple graph <math><mrow><mi>G</mi> <mo>=</mo> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo>)</mo></mrow> </math> and a placement <math><mrow><mi>p</mi> <mo>:</mo> <mi>V</mi> <mo>→</mo> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> </mrow> </math> . The framework is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of the space. This article combines two recent extensions of the generic theory of rigid and flexible graphs by considering symmetric frameworks in <math> <msup><mrow><mi>R</mi></mrow> <mn>3</mn></msup> </math> restricted to move on a surface. In particular necessary combinatorial conditions are given for a symmetric framework on the cylinder to be isostatic (i.e. minimally infinitesimally rigid) under any finite point group symmetry. In every case when the symmetry group is cyclic, which we prove restricts the group to being inversion, half-turn or reflection symmetry, these conditions are then shown to be sufficient under suitable genericity assumptions, giving precise combinatorial descriptions of symmetric isostatic graphs in these contexts.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"73 3\",\"pages\":\"629-673\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914369/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-025-00723-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-025-00723-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

杆节点框架(G, p)是有限简单图G = (V, E)和位置p: V→R d的组合。如果唯一保持顶点连续运动的边长来自空间的等距,则框架是刚性的。本文结合了刚性图和挠性图一般理论的两个最新扩展,考虑了r3中被限制在表面上移动的对称框架。特别给出了圆柱上对称框架在任何有限点群对称下均衡(即最小无穷小刚性)的必要组合条件。在每一种情况下,当对称群是循环时,我们证明了这限制了群是逆对称、半旋对称或反射对称,然后在适当的一般性假设下证明了这些条件是充分的,在这些情况下给出了对称均衡图的精确组合描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of Symmetric Frameworks on the Cylinder.

A bar-joint framework (Gp) is the combination of a finite simple graph G = ( V , E ) and a placement p : V R d . The framework is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of the space. This article combines two recent extensions of the generic theory of rigid and flexible graphs by considering symmetric frameworks in R 3 restricted to move on a surface. In particular necessary combinatorial conditions are given for a symmetric framework on the cylinder to be isostatic (i.e. minimally infinitesimally rigid) under any finite point group symmetry. In every case when the symmetry group is cyclic, which we prove restricts the group to being inversion, half-turn or reflection symmetry, these conditions are then shown to be sufficient under suitable genericity assumptions, giving precise combinatorial descriptions of symmetric isostatic graphs in these contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信