四胸草乙醇叶提取物对阿斯巴甜暴露Wistar大鼠脑的抗氧化、抗炎和抗凋亡作用。

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2025-07-01 Epub Date: 2025-03-20 DOI:10.1007/s12035-025-04839-z
Akeem Olalekan Lawal, Olaoluwa Oladimeji Agboola, Moses Orimoloye Akinjiyan, Taiwo Tolulope Ijatuyi, Damilola Timothy Dahunsi, Oritoke Modupe Okeowo, Ibukun Mary Folorunso, Olakunle Julius Olajuyigbe, Olusola Olalekan Elekofehinti
{"title":"四胸草乙醇叶提取物对阿斯巴甜暴露Wistar大鼠脑的抗氧化、抗炎和抗凋亡作用。","authors":"Akeem Olalekan Lawal, Olaoluwa Oladimeji Agboola, Moses Orimoloye Akinjiyan, Taiwo Tolulope Ijatuyi, Damilola Timothy Dahunsi, Oritoke Modupe Okeowo, Ibukun Mary Folorunso, Olakunle Julius Olajuyigbe, Olusola Olalekan Elekofehinti","doi":"10.1007/s12035-025-04839-z","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial sweeteners' neurotoxicity remains a significant health concern. This study investigated the neurotoxic effects of aspartame (ASP) and evaluated the neuroprotective potential of Tetrapleura tetraptera ethanol extract (TT) in Wistar rats. Thirty male rats were grouped into six (n = 5) and some received oral ASP administration for 14 days, with some groups post-treated with TT (200 and 400 mg/kg) orally for 14 days. Neurotransmitter function, oxidative stress markers, inflammatory mediators, and apoptotic parameters were assessed using biochemical assays and RT-PCR on serum and brain tissues after the sacrifice. ASP significantly (p < 0.001) increased AChE and BChE activities while decreasing dopamine levels. RT-PCR analysis revealed that ASP upregulated pro-inflammatory genes (TNF-α, IL-6, IL-1β) and pro-apoptotic markers (BAX, CASP3, CASP9, P53) while downregulating anti-apoptotic BCL-2 gene expression. ASP also reduced antioxidant levels (GSH, GCL), elevated S100B level and activated cAMP/PKA signalling. TT post-treatment significantly (p < 0.001) reversed these alterations, reducing MDA and GSSG levels while enhancing GSH/GSSG ratio and antioxidant activities. TT markedly downregulated inflammatory markers and upregulated IL-10 expression. Histopathological examination suggests TT's protective effects against ASP-induced neural damage. These findings indicate that TT exhibits neuroprotective properties through its antioxidant, anti-inflammatory, and anti-apoptotic activities against ASP-induced neurotoxicity.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9430-9448"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Antioxidative, Anti-inflammatory and Anti-apoptotic Effects of Tetrapleura Tetraptera (Aidan) Ethanol Leaf Extract in the Brain of Wistar Rats Exposed to Aspartame.\",\"authors\":\"Akeem Olalekan Lawal, Olaoluwa Oladimeji Agboola, Moses Orimoloye Akinjiyan, Taiwo Tolulope Ijatuyi, Damilola Timothy Dahunsi, Oritoke Modupe Okeowo, Ibukun Mary Folorunso, Olakunle Julius Olajuyigbe, Olusola Olalekan Elekofehinti\",\"doi\":\"10.1007/s12035-025-04839-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial sweeteners' neurotoxicity remains a significant health concern. This study investigated the neurotoxic effects of aspartame (ASP) and evaluated the neuroprotective potential of Tetrapleura tetraptera ethanol extract (TT) in Wistar rats. Thirty male rats were grouped into six (n = 5) and some received oral ASP administration for 14 days, with some groups post-treated with TT (200 and 400 mg/kg) orally for 14 days. Neurotransmitter function, oxidative stress markers, inflammatory mediators, and apoptotic parameters were assessed using biochemical assays and RT-PCR on serum and brain tissues after the sacrifice. ASP significantly (p < 0.001) increased AChE and BChE activities while decreasing dopamine levels. RT-PCR analysis revealed that ASP upregulated pro-inflammatory genes (TNF-α, IL-6, IL-1β) and pro-apoptotic markers (BAX, CASP3, CASP9, P53) while downregulating anti-apoptotic BCL-2 gene expression. ASP also reduced antioxidant levels (GSH, GCL), elevated S100B level and activated cAMP/PKA signalling. TT post-treatment significantly (p < 0.001) reversed these alterations, reducing MDA and GSSG levels while enhancing GSH/GSSG ratio and antioxidant activities. TT markedly downregulated inflammatory markers and upregulated IL-10 expression. Histopathological examination suggests TT's protective effects against ASP-induced neural damage. These findings indicate that TT exhibits neuroprotective properties through its antioxidant, anti-inflammatory, and anti-apoptotic activities against ASP-induced neurotoxicity.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"9430-9448\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04839-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04839-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人造甜味剂的神经毒性仍然是一个重大的健康问题。本研究探讨了阿斯巴甜(ASP)对Wistar大鼠的神经毒性作用,并评价了四胸草乙醇提取物(TT)对Wistar大鼠的神经保护作用。雄性大鼠30只,每组5只,每组口服ASP 14 d,每组口服TT(200、400 mg/kg) 14 d。采用生化检测和RT-PCR检测大鼠血清和脑组织的神经递质功能、氧化应激标志物、炎症介质和凋亡参数。ASP显著(p)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Antioxidative, Anti-inflammatory and Anti-apoptotic Effects of Tetrapleura Tetraptera (Aidan) Ethanol Leaf Extract in the Brain of Wistar Rats Exposed to Aspartame.

Artificial sweeteners' neurotoxicity remains a significant health concern. This study investigated the neurotoxic effects of aspartame (ASP) and evaluated the neuroprotective potential of Tetrapleura tetraptera ethanol extract (TT) in Wistar rats. Thirty male rats were grouped into six (n = 5) and some received oral ASP administration for 14 days, with some groups post-treated with TT (200 and 400 mg/kg) orally for 14 days. Neurotransmitter function, oxidative stress markers, inflammatory mediators, and apoptotic parameters were assessed using biochemical assays and RT-PCR on serum and brain tissues after the sacrifice. ASP significantly (p < 0.001) increased AChE and BChE activities while decreasing dopamine levels. RT-PCR analysis revealed that ASP upregulated pro-inflammatory genes (TNF-α, IL-6, IL-1β) and pro-apoptotic markers (BAX, CASP3, CASP9, P53) while downregulating anti-apoptotic BCL-2 gene expression. ASP also reduced antioxidant levels (GSH, GCL), elevated S100B level and activated cAMP/PKA signalling. TT post-treatment significantly (p < 0.001) reversed these alterations, reducing MDA and GSSG levels while enhancing GSH/GSSG ratio and antioxidant activities. TT markedly downregulated inflammatory markers and upregulated IL-10 expression. Histopathological examination suggests TT's protective effects against ASP-induced neural damage. These findings indicate that TT exhibits neuroprotective properties through its antioxidant, anti-inflammatory, and anti-apoptotic activities against ASP-induced neurotoxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信