生后早期小鼠磨牙和门牙三维类器官培养的建立。

Q4 Biochemistry, Genetics and Molecular Biology
Florian Hermans, Hugo Vankelecom, Annelies Bronckaers, Ivo Lambrichts
{"title":"生后早期小鼠磨牙和门牙三维类器官培养的建立。","authors":"Florian Hermans, Hugo Vankelecom, Annelies Bronckaers, Ivo Lambrichts","doi":"10.1007/7651_2025_623","DOIUrl":null,"url":null,"abstract":"<p><p>Organoid models are a powerful 3D stem cell technology to explore tissue (patho-)biology and development. Tissue-derived (i.e., from tissue biopsies) organoids are long-term and stably expandable while more closely recapitulating key phenotypical and functional characteristics of the tissue-of-origin than traditional 2D culture systems. Additionally, organoids can differentiate into tissue-specific cell types, for instance, following exposure to defined differentiation cues. Although prevailing in vitro cell models have deepened our understanding of mouse tooth development and biology, in vitro representations of the dental epithelium lack (the combination of) these benefits of tissue-derived organoids and are at most derived from one tooth type. Here, we describe the protocol to establish, propagate, and differentiate mouse tooth organoids from both early postnatal molar and incisor teeth. The established organoids display a dental epithelial stemness phenotype and acquire a maturation-stage ameloblast-like phenotype following differentiation.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of 3D Tooth Organoid Culture from Early-Postnatal Mouse Molar and Incisor.\",\"authors\":\"Florian Hermans, Hugo Vankelecom, Annelies Bronckaers, Ivo Lambrichts\",\"doi\":\"10.1007/7651_2025_623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organoid models are a powerful 3D stem cell technology to explore tissue (patho-)biology and development. Tissue-derived (i.e., from tissue biopsies) organoids are long-term and stably expandable while more closely recapitulating key phenotypical and functional characteristics of the tissue-of-origin than traditional 2D culture systems. Additionally, organoids can differentiate into tissue-specific cell types, for instance, following exposure to defined differentiation cues. Although prevailing in vitro cell models have deepened our understanding of mouse tooth development and biology, in vitro representations of the dental epithelium lack (the combination of) these benefits of tissue-derived organoids and are at most derived from one tooth type. Here, we describe the protocol to establish, propagate, and differentiate mouse tooth organoids from both early postnatal molar and incisor teeth. The established organoids display a dental epithelial stemness phenotype and acquire a maturation-stage ameloblast-like phenotype following differentiation.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2025_623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2025_623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

类器官模型是一种强大的3D干细胞技术,用于探索组织(病理)生物学和发育。组织来源(即来自组织活检)的类器官是长期和稳定可扩展的,同时比传统的二维培养系统更接近地再现了组织来源的关键表型和功能特征。此外,类器官可以分化为组织特异性细胞类型,例如,暴露于定义的分化线索后。尽管流行的体外细胞模型加深了我们对小鼠牙齿发育和生物学的理解,但体外牙上皮的表征缺乏(结合)组织来源的类器官的这些好处,而且最多来自一种牙齿类型。在这里,我们描述了建立、繁殖和分化小鼠牙齿类器官的方案,这些器官来自出生后早期的磨牙和门牙。建立的类器官显示牙上皮干性表型,并在分化后获得成熟阶段的成釉细胞样表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Establishment of 3D Tooth Organoid Culture from Early-Postnatal Mouse Molar and Incisor.

Organoid models are a powerful 3D stem cell technology to explore tissue (patho-)biology and development. Tissue-derived (i.e., from tissue biopsies) organoids are long-term and stably expandable while more closely recapitulating key phenotypical and functional characteristics of the tissue-of-origin than traditional 2D culture systems. Additionally, organoids can differentiate into tissue-specific cell types, for instance, following exposure to defined differentiation cues. Although prevailing in vitro cell models have deepened our understanding of mouse tooth development and biology, in vitro representations of the dental epithelium lack (the combination of) these benefits of tissue-derived organoids and are at most derived from one tooth type. Here, we describe the protocol to establish, propagate, and differentiate mouse tooth organoids from both early postnatal molar and incisor teeth. The established organoids display a dental epithelial stemness phenotype and acquire a maturation-stage ameloblast-like phenotype following differentiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信