肌营养不良患者运动诱导肌肉损伤后的通用蛋白质组学特征。

IF 4.4 2区 医学 Q1 CLINICAL NEUROLOGY
Mads G Stemmerik, Benjamin Barthel, Nanna R Andersen, Sofie V Skriver, Alan J Russell, John Vissing
{"title":"肌营养不良患者运动诱导肌肉损伤后的通用蛋白质组学特征。","authors":"Mads G Stemmerik, Benjamin Barthel, Nanna R Andersen, Sofie V Skriver, Alan J Russell, John Vissing","doi":"10.1002/acn3.70035","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Several neuromuscular disorders (NMDs) are characterized by progressive muscle damage and are marked by the elevation of circulating muscle proteins from activity-related injury. Despite a diverse array of genetic drivers, many NMDs share similar patterns of exercise intolerance and higher concentrations of muscle injury proteins relative to unaffected individuals. While the interplay between the nature of the muscle injury and the specific genetic driver is poorly understood, the similarities exhibited by various NMDs suggest that a common proteomic signature of muscle injury may exist.</p><p><strong>Methods: </strong>We used an established exercise challenge and the SOMAscan proteomics platform to study the baseline and post-exercise proteomic profiles in a cross-sectional study of three different muscular dystrophies: Becker muscular dystrophy (BMD) and limb girdle muscular dystrophy types R9 and R12.</p><p><strong>Results: </strong>Our Results Uncover a Common Signature of Circulating Proteins That Are Elevated in all Three Myopathies, Some of Which Are Further Elevated by Exercise in Becker Muscular Dystrophy and Limb Girdle Muscular Dystrophy Type R9, and Others That Are Not Responsive to Exercise.</p><p><strong>Interpretation: </strong>Interestingly, these two signatures exhibit opposing trajectories with age in a larger cross-sectional cohort of BMD individuals. This research represents a first step toward defining an annotated protein signature coupled with activity-injury, a defining pathophysiological feature of many myopathies.</p>","PeriodicalId":126,"journal":{"name":"Annals of Clinical and Translational Neurology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal Proteomic Signature After Exercise-Induced Muscle Injury in Muscular Dystrophies.\",\"authors\":\"Mads G Stemmerik, Benjamin Barthel, Nanna R Andersen, Sofie V Skriver, Alan J Russell, John Vissing\",\"doi\":\"10.1002/acn3.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Several neuromuscular disorders (NMDs) are characterized by progressive muscle damage and are marked by the elevation of circulating muscle proteins from activity-related injury. Despite a diverse array of genetic drivers, many NMDs share similar patterns of exercise intolerance and higher concentrations of muscle injury proteins relative to unaffected individuals. While the interplay between the nature of the muscle injury and the specific genetic driver is poorly understood, the similarities exhibited by various NMDs suggest that a common proteomic signature of muscle injury may exist.</p><p><strong>Methods: </strong>We used an established exercise challenge and the SOMAscan proteomics platform to study the baseline and post-exercise proteomic profiles in a cross-sectional study of three different muscular dystrophies: Becker muscular dystrophy (BMD) and limb girdle muscular dystrophy types R9 and R12.</p><p><strong>Results: </strong>Our Results Uncover a Common Signature of Circulating Proteins That Are Elevated in all Three Myopathies, Some of Which Are Further Elevated by Exercise in Becker Muscular Dystrophy and Limb Girdle Muscular Dystrophy Type R9, and Others That Are Not Responsive to Exercise.</p><p><strong>Interpretation: </strong>Interestingly, these two signatures exhibit opposing trajectories with age in a larger cross-sectional cohort of BMD individuals. This research represents a first step toward defining an annotated protein signature coupled with activity-injury, a defining pathophysiological feature of many myopathies.</p>\",\"PeriodicalId\":126,\"journal\":{\"name\":\"Annals of Clinical and Translational Neurology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Clinical and Translational Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/acn3.70035\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical and Translational Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acn3.70035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:一些神经肌肉疾病(NMDs)以进行性肌肉损伤为特征,并以活动相关损伤引起的循环肌肉蛋白升高为标志。尽管遗传驱动因素多种多样,但与未受影响的个体相比,许多nmd具有相似的运动不耐受模式和更高浓度的肌肉损伤蛋白。虽然肌肉损伤的性质与特定遗传驱动因素之间的相互作用尚不清楚,但各种nmd所表现出的相似性表明,肌肉损伤可能存在共同的蛋白质组学特征。方法:我们使用既定的运动挑战和SOMAscan蛋白质组学平台来研究三种不同肌肉营养不良症的基线和运动后蛋白质组学特征:贝克肌营养不良症(BMD)和肢带肌营养不良型R9和R12。结果:我们的研究结果揭示了循环蛋白在所有三种肌病中升高的共同特征,其中一些在Becker肌萎缩症和肢体带状肌萎缩症R9型中通过运动进一步升高,而其他的则对运动没有反应。解释:有趣的是,在一个更大的BMD个体横断面队列中,这两个特征随着年龄的增长表现出相反的轨迹。这项研究代表了向定义与活动损伤相结合的注释蛋白特征迈出的第一步,活动损伤是许多肌病的病理生理特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal Proteomic Signature After Exercise-Induced Muscle Injury in Muscular Dystrophies.

Objective: Several neuromuscular disorders (NMDs) are characterized by progressive muscle damage and are marked by the elevation of circulating muscle proteins from activity-related injury. Despite a diverse array of genetic drivers, many NMDs share similar patterns of exercise intolerance and higher concentrations of muscle injury proteins relative to unaffected individuals. While the interplay between the nature of the muscle injury and the specific genetic driver is poorly understood, the similarities exhibited by various NMDs suggest that a common proteomic signature of muscle injury may exist.

Methods: We used an established exercise challenge and the SOMAscan proteomics platform to study the baseline and post-exercise proteomic profiles in a cross-sectional study of three different muscular dystrophies: Becker muscular dystrophy (BMD) and limb girdle muscular dystrophy types R9 and R12.

Results: Our Results Uncover a Common Signature of Circulating Proteins That Are Elevated in all Three Myopathies, Some of Which Are Further Elevated by Exercise in Becker Muscular Dystrophy and Limb Girdle Muscular Dystrophy Type R9, and Others That Are Not Responsive to Exercise.

Interpretation: Interestingly, these two signatures exhibit opposing trajectories with age in a larger cross-sectional cohort of BMD individuals. This research represents a first step toward defining an annotated protein signature coupled with activity-injury, a defining pathophysiological feature of many myopathies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Clinical and Translational Neurology
Annals of Clinical and Translational Neurology Medicine-Neurology (clinical)
CiteScore
9.10
自引率
1.90%
发文量
218
审稿时长
8 weeks
期刊介绍: Annals of Clinical and Translational Neurology is a peer-reviewed journal for rapid dissemination of high-quality research related to all areas of neurology. The journal publishes original research and scholarly reviews focused on the mechanisms and treatments of diseases of the nervous system; high-impact topics in neurologic education; and other topics of interest to the clinical neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信