基于负数据增强和多模型集成的sp2 C-H卤化反应区域选择性预测

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Zhiting Zhang, Jia Qiu, Jiajun Zheng, Zhunzhun Yu, Lebin Su, Qianghua Lin, Chonghuan Zhang, Kuangbiao Liao
{"title":"基于负数据增强和多模型集成的sp2 C-H卤化反应区域选择性预测","authors":"Zhiting Zhang, Jia Qiu, Jiajun Zheng, Zhunzhun Yu, Lebin Su, Qianghua Lin, Chonghuan Zhang, Kuangbiao Liao","doi":"10.1021/acs.jcim.5c00281","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient molecular editing is pivotal in synthetic chemistry, especially for developing drugs, materials, and high-value chemicals. Electrophilic aromatic substitution (S<sub>E</sub>Ar) reactions, specifically sp<sup>2</sup> C-H halogenation, face significant challenges due to electronic and steric factors, necessitating extensive trial-and-error. This study introduces an innovative machine learning-based model to predict halogenation sites in S<sub>E</sub>Ar reactions, achieving an average accuracy of 93% in 5-fold cross-validation. Employing ensemble techniques, particularly AutoGluon-Tabular (AG), the model demonstrates broad applicability across various aromatic halides, enhancing its utility in drug design, materials science, and more. By reducing experimental uncertainty and optimizing synthetic pathways, this model saves considerable time and resources, thereby accelerating innovation in synthetic chemistry.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"3420-3430"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Regioselectivity Prediction of sp<sup>2</sup> C-H Halogenation via Negative Data Augmentation and Multimodel Integration.\",\"authors\":\"Zhiting Zhang, Jia Qiu, Jiajun Zheng, Zhunzhun Yu, Lebin Su, Qianghua Lin, Chonghuan Zhang, Kuangbiao Liao\",\"doi\":\"10.1021/acs.jcim.5c00281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient molecular editing is pivotal in synthetic chemistry, especially for developing drugs, materials, and high-value chemicals. Electrophilic aromatic substitution (S<sub>E</sub>Ar) reactions, specifically sp<sup>2</sup> C-H halogenation, face significant challenges due to electronic and steric factors, necessitating extensive trial-and-error. This study introduces an innovative machine learning-based model to predict halogenation sites in S<sub>E</sub>Ar reactions, achieving an average accuracy of 93% in 5-fold cross-validation. Employing ensemble techniques, particularly AutoGluon-Tabular (AG), the model demonstrates broad applicability across various aromatic halides, enhancing its utility in drug design, materials science, and more. By reducing experimental uncertainty and optimizing synthetic pathways, this model saves considerable time and resources, thereby accelerating innovation in synthetic chemistry.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"3420-3430\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.5c00281\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00281","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

高效的分子编辑在合成化学中至关重要,特别是在开发药物、材料和高价值化学品方面。亲电芳香取代(SEAr)反应,特别是sp2碳-氢卤化反应,由于电子和空间因素,面临着巨大的挑战,需要大量的试错。本研究引入了一种创新的基于机器学习的模型来预测SEAr反应中的卤化位点,在5倍交叉验证中平均准确率达到93%。采用集成技术,特别是AutoGluon-Tabular (AG),该模型显示了对各种芳香族卤化物的广泛适用性,增强了其在药物设计,材料科学等方面的实用性。通过减少实验的不确定性和优化合成途径,该模型节省了大量的时间和资源,从而加速了合成化学的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Regioselectivity Prediction of sp2 C-H Halogenation via Negative Data Augmentation and Multimodel Integration.

Efficient molecular editing is pivotal in synthetic chemistry, especially for developing drugs, materials, and high-value chemicals. Electrophilic aromatic substitution (SEAr) reactions, specifically sp2 C-H halogenation, face significant challenges due to electronic and steric factors, necessitating extensive trial-and-error. This study introduces an innovative machine learning-based model to predict halogenation sites in SEAr reactions, achieving an average accuracy of 93% in 5-fold cross-validation. Employing ensemble techniques, particularly AutoGluon-Tabular (AG), the model demonstrates broad applicability across various aromatic halides, enhancing its utility in drug design, materials science, and more. By reducing experimental uncertainty and optimizing synthetic pathways, this model saves considerable time and resources, thereby accelerating innovation in synthetic chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信