类不平衡下自适应有序样本加权元resnet故障严重程度分类

IF 11.7 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Qifa Xu;Zhenglei Jin;Cuixia Jiang;Zheng Liu
{"title":"类不平衡下自适应有序样本加权元resnet故障严重程度分类","authors":"Qifa Xu;Zhenglei Jin;Cuixia Jiang;Zheng Liu","doi":"10.1109/TII.2025.3545106","DOIUrl":null,"url":null,"abstract":"In intelligent fault diagnosis, fault severity classification with class imbalance remains a tremendous challenge. To simultaneously consider relative natural order in fault severity and class imbalance, we propose the adaptive ordinal sample-weighted meta residual network (AOSW-MRN). The AOSW-MRN model uses a weighting network and a meta-model cloned from the residual network to create a nonlinear weighted mapping. It adaptively learns sample weights from a balanced and clean-label meta-dataset, training a model robust to imbalance and ordinal relationships. We validate its effectiveness in two real-world case studies with different imbalance rates. Experimental results demonstrate that our model outperforms several existing Start-of-the-Art models regardless of classification and regression performance since it considers the ordinality of samples in the feature space.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"21 6","pages":"4798-4808"},"PeriodicalIF":11.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Ordinal Sample-Weighted Meta-ResNet for Fault Severity Classification Under Class Imbalance\",\"authors\":\"Qifa Xu;Zhenglei Jin;Cuixia Jiang;Zheng Liu\",\"doi\":\"10.1109/TII.2025.3545106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In intelligent fault diagnosis, fault severity classification with class imbalance remains a tremendous challenge. To simultaneously consider relative natural order in fault severity and class imbalance, we propose the adaptive ordinal sample-weighted meta residual network (AOSW-MRN). The AOSW-MRN model uses a weighting network and a meta-model cloned from the residual network to create a nonlinear weighted mapping. It adaptively learns sample weights from a balanced and clean-label meta-dataset, training a model robust to imbalance and ordinal relationships. We validate its effectiveness in two real-world case studies with different imbalance rates. Experimental results demonstrate that our model outperforms several existing Start-of-the-Art models regardless of classification and regression performance since it considers the ordinality of samples in the feature space.\",\"PeriodicalId\":13301,\"journal\":{\"name\":\"IEEE Transactions on Industrial Informatics\",\"volume\":\"21 6\",\"pages\":\"4798-4808\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10933552/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10933552/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在智能故障诊断中,基于类不平衡的故障严重程度分类是一个巨大的挑战。为了同时考虑故障严重程度和类不平衡的相对自然顺序,我们提出了自适应有序样本加权元残差网络(aow - mrn)。aoww - mrn模型使用加权网络和从残差网络克隆的元模型来创建非线性加权映射。它自适应地从平衡和干净标签的元数据集中学习样本权重,训练一个对不平衡和有序关系具有鲁棒性的模型。我们在两个具有不同失衡率的实际案例研究中验证了其有效性。实验结果表明,由于我们的模型考虑了特征空间中样本的序性,因此无论分类和回归性能如何,我们的模型都优于几种现有的start -of- art模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Ordinal Sample-Weighted Meta-ResNet for Fault Severity Classification Under Class Imbalance
In intelligent fault diagnosis, fault severity classification with class imbalance remains a tremendous challenge. To simultaneously consider relative natural order in fault severity and class imbalance, we propose the adaptive ordinal sample-weighted meta residual network (AOSW-MRN). The AOSW-MRN model uses a weighting network and a meta-model cloned from the residual network to create a nonlinear weighted mapping. It adaptively learns sample weights from a balanced and clean-label meta-dataset, training a model robust to imbalance and ordinal relationships. We validate its effectiveness in two real-world case studies with different imbalance rates. Experimental results demonstrate that our model outperforms several existing Start-of-the-Art models regardless of classification and regression performance since it considers the ordinality of samples in the feature space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Industrial Informatics
IEEE Transactions on Industrial Informatics 工程技术-工程:工业
CiteScore
24.10
自引率
8.90%
发文量
1202
审稿时长
5.1 months
期刊介绍: The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信