{"title":"广义码频空间索引调制:下一代绿色通信解决方案","authors":"Bang Huang;Jiajie Xu;Mohamed-Slim Alouini","doi":"10.1109/TWC.2025.3550446","DOIUrl":null,"url":null,"abstract":"For next-generation green communication systems, this article proposes an innovative communication system based on frequency-diverse array-multiple-input multiple-output (FDA-MIMO) technology, which aims to achieve high data rates while maintaining low power consumption. This system utilizes frequency offset index realign modulation, multiple-antenna spatial index modulation, and spreading code index modulation techniques. In the proposed generalized code index modulation-aided frequency offset realign multiple-antenna spatial modulation (GCIM-FORMASM) system, the coming bits are divided into five parts: spatial modulation bits by activating multiple transmit antennas, frequency offset index bits of the FDA antennas, including frequency offset combination bits and frequency offset realign bits, spreading code index modulation bits, and modulated symbol bits. Subsequently, this paper utilizes the orthogonal waveforms transmitted by the FDA to design the corresponding transmitter and receiver structures and provide specific expressions for the received signals. Meanwhile, to reduce the decoding complexity of the maximum likelihood (ML) algorithm, we propose a three-stage despreading-based low complexity (DBLC) algorithm leveraging the orthogonality of the spreading codes. Additionally, a closed-form expression for the upper bound of the average bit error probability (ABEP) of the DBLC algorithm has been derived. Analyzing metrics such as energy efficiency and data rate shows that the proposed system features low power consumption and high data transmission rates, which aligns better with the concept of future green communications. The effectiveness of our proposed methods has been validated through comprehensive numerical results.","PeriodicalId":13431,"journal":{"name":"IEEE Transactions on Wireless Communications","volume":"24 7","pages":"5990-6005"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Code-Frequency-Space Index Modulation: A Next-Generation Green Communication Solution\",\"authors\":\"Bang Huang;Jiajie Xu;Mohamed-Slim Alouini\",\"doi\":\"10.1109/TWC.2025.3550446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For next-generation green communication systems, this article proposes an innovative communication system based on frequency-diverse array-multiple-input multiple-output (FDA-MIMO) technology, which aims to achieve high data rates while maintaining low power consumption. This system utilizes frequency offset index realign modulation, multiple-antenna spatial index modulation, and spreading code index modulation techniques. In the proposed generalized code index modulation-aided frequency offset realign multiple-antenna spatial modulation (GCIM-FORMASM) system, the coming bits are divided into five parts: spatial modulation bits by activating multiple transmit antennas, frequency offset index bits of the FDA antennas, including frequency offset combination bits and frequency offset realign bits, spreading code index modulation bits, and modulated symbol bits. Subsequently, this paper utilizes the orthogonal waveforms transmitted by the FDA to design the corresponding transmitter and receiver structures and provide specific expressions for the received signals. Meanwhile, to reduce the decoding complexity of the maximum likelihood (ML) algorithm, we propose a three-stage despreading-based low complexity (DBLC) algorithm leveraging the orthogonality of the spreading codes. Additionally, a closed-form expression for the upper bound of the average bit error probability (ABEP) of the DBLC algorithm has been derived. Analyzing metrics such as energy efficiency and data rate shows that the proposed system features low power consumption and high data transmission rates, which aligns better with the concept of future green communications. The effectiveness of our proposed methods has been validated through comprehensive numerical results.\",\"PeriodicalId\":13431,\"journal\":{\"name\":\"IEEE Transactions on Wireless Communications\",\"volume\":\"24 7\",\"pages\":\"5990-6005\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10932683/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10932683/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Generalized Code-Frequency-Space Index Modulation: A Next-Generation Green Communication Solution
For next-generation green communication systems, this article proposes an innovative communication system based on frequency-diverse array-multiple-input multiple-output (FDA-MIMO) technology, which aims to achieve high data rates while maintaining low power consumption. This system utilizes frequency offset index realign modulation, multiple-antenna spatial index modulation, and spreading code index modulation techniques. In the proposed generalized code index modulation-aided frequency offset realign multiple-antenna spatial modulation (GCIM-FORMASM) system, the coming bits are divided into five parts: spatial modulation bits by activating multiple transmit antennas, frequency offset index bits of the FDA antennas, including frequency offset combination bits and frequency offset realign bits, spreading code index modulation bits, and modulated symbol bits. Subsequently, this paper utilizes the orthogonal waveforms transmitted by the FDA to design the corresponding transmitter and receiver structures and provide specific expressions for the received signals. Meanwhile, to reduce the decoding complexity of the maximum likelihood (ML) algorithm, we propose a three-stage despreading-based low complexity (DBLC) algorithm leveraging the orthogonality of the spreading codes. Additionally, a closed-form expression for the upper bound of the average bit error probability (ABEP) of the DBLC algorithm has been derived. Analyzing metrics such as energy efficiency and data rate shows that the proposed system features low power consumption and high data transmission rates, which aligns better with the concept of future green communications. The effectiveness of our proposed methods has been validated through comprehensive numerical results.
期刊介绍:
The IEEE Transactions on Wireless Communications is a prestigious publication that showcases cutting-edge advancements in wireless communications. It welcomes both theoretical and practical contributions in various areas. The scope of the Transactions encompasses a wide range of topics, including modulation and coding, detection and estimation, propagation and channel characterization, and diversity techniques. The journal also emphasizes the physical and link layer communication aspects of network architectures and protocols.
The journal is open to papers on specific topics or non-traditional topics related to specific application areas. This includes simulation tools and methodologies, orthogonal frequency division multiplexing, MIMO systems, and wireless over optical technologies.
Overall, the IEEE Transactions on Wireless Communications serves as a platform for high-quality manuscripts that push the boundaries of wireless communications and contribute to advancements in the field.